ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.3803
  4. Cited By
Stochastic Compositional Gradient Descent: Algorithms for Minimizing
  Compositions of Expected-Value Functions

Stochastic Compositional Gradient Descent: Algorithms for Minimizing Compositions of Expected-Value Functions

14 November 2014
Mengdi Wang
Ethan X. Fang
Han Liu
ArXivPDFHTML

Papers citing "Stochastic Compositional Gradient Descent: Algorithms for Minimizing Compositions of Expected-Value Functions"

15 / 15 papers shown
Title
Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning
Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning
Sihan Zeng
Thinh T. Doan
39
5
0
15 May 2024
FedDRO: Federated Compositional Optimization for Distributionally Robust
  Learning
FedDRO: Federated Compositional Optimization for Distributionally Robust Learning
Prashant Khanduri
Chengyin Li
Rafi Ibn Sultan
Yao Qiang
Joerg Kliewer
Dongxiao Zhu
25
0
0
21 Nov 2023
Doubly Robust Instance-Reweighted Adversarial Training
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
13
2
0
01 Aug 2023
Achieving Linear Speedup in Decentralized Stochastic Compositional
  Minimax Optimization
Achieving Linear Speedup in Decentralized Stochastic Compositional Minimax Optimization
Hongchang Gao
17
1
0
25 Jul 2023
Stability and Generalization of Stochastic Compositional Gradient
  Descent Algorithms
Stability and Generalization of Stochastic Compositional Gradient Descent Algorithms
Minghao Yang
Xiyuan Wei
Tianbao Yang
Yiming Ying
19
1
0
07 Jul 2023
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuan-Fu Ding
Jingyang Li
Kim-Chuan Toh
12
8
0
26 Jun 2023
Modified Gauss-Newton Algorithms under Noise
Modified Gauss-Newton Algorithms under Noise
Krishna Pillutla
Vincent Roulet
Sham Kakade
Zaïd Harchaoui
6
3
0
18 May 2023
Multi-block-Single-probe Variance Reduced Estimator for Coupled
  Compositional Optimization
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
12
16
0
18 Jul 2022
Multi-block Min-max Bilevel Optimization with Applications in Multi-task
  Deep AUC Maximization
Multi-block Min-max Bilevel Optimization with Applications in Multi-task Deep AUC Maximization
Quanqi Hu
Yongjian Zhong
Tianbao Yang
22
16
0
01 Jun 2022
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
FedNest: Federated Bilevel, Minimax, and Compositional Optimization
Davoud Ataee Tarzanagh
Mingchen Li
Christos Thrampoulidis
Samet Oymak
FedML
15
73
0
04 May 2022
Finite-Sum Coupled Compositional Stochastic Optimization: Theory and
  Applications
Finite-Sum Coupled Compositional Stochastic Optimization: Theory and Applications
Bokun Wang
Tianbao Yang
18
31
0
24 Feb 2022
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Wei Jiang
Bokun Wang
Yibo Wang
Lijun Zhang
Tianbao Yang
59
17
0
15 Feb 2022
Convergence Rates of Two-Time-Scale Gradient Descent-Ascent Dynamics for
  Solving Nonconvex Min-Max Problems
Convergence Rates of Two-Time-Scale Gradient Descent-Ascent Dynamics for Solving Nonconvex Min-Max Problems
Thinh T. Doan
4
15
0
17 Dec 2021
Sinkhorn Distributionally Robust Optimization
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
21
35
0
24 Sep 2021
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
99
570
0
08 Dec 2012
1