ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.3779
  4. Cited By
Biips: Software for Bayesian Inference with Interacting Particle Systems

Biips: Software for Bayesian Inference with Interacting Particle Systems

11 December 2014
A. Todeschini
François Caron
Marc Fuentes
P. Legrand
P. Del Moral
ArXiv (abs)PDFHTML

Papers citing "Biips: Software for Bayesian Inference with Interacting Particle Systems"

11 / 11 papers shown
Title
Lazy object copy as a platform for population-based probabilistic
  programming
Lazy object copy as a platform for population-based probabilistic programming
Lawrence M. Murray
51
5
0
09 Jan 2020
Parameter elimination in particle Gibbs sampling
Parameter elimination in particle Gibbs sampling
A. Wigren
Riccardo Sven Risuleo
Lawrence M. Murray
Fredrik Lindsten
83
15
0
30 Oct 2019
Particle filter with rejection control and unbiased estimator of the
  marginal likelihood
Particle filter with rejection control and unbiased estimator of the marginal likelihood
J. Kudlicka
Lawrence M. Murray
Thomas B. Schon
Fredrik Lindsten
115
2
0
21 Oct 2019
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
Nested Reasoning About Autonomous Agents Using Probabilistic Programs
I. Seaman
Jan-Willem van de Meent
David Wingate
LRM
83
13
0
04 Dec 2018
Automated learning with a probabilistic programming language: Birch
Automated learning with a probabilistic programming language: Birch
Lawrence M. Murray
Thomas B. Schon
78
63
0
02 Oct 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
88
200
0
27 Sep 2018
Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic
  Programs
Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic Programs
Lawrence M. Murray
Daniel Lundén
J. Kudlicka
David Broman
Thomas B. Schon
71
60
0
25 Aug 2017
Sequential Monte Carlo Methods in the nimble R Package
Sequential Monte Carlo Methods in the nimble R Package
Nick Michaud
P. de Valpine
Daniel Turek
C. Paciorek
D. Nguyen
73
6
0
17 Mar 2017
Towards Practical Bayesian Parameter and State Estimation
Towards Practical Bayesian Parameter and State Estimation
Yusuf Erol
Yi Wu
Lei Li
Stuart J. Russell
55
0
0
29 Mar 2016
Inference Networks for Sequential Monte Carlo in Graphical Models
Inference Networks for Sequential Monte Carlo in Graphical Models
Brooks Paige
Frank Wood
BDL
169
110
0
22 Feb 2016
Getting Started with Particle Metropolis-Hastings for Inference in
  Nonlinear Dynamical Models
Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models
J. Dahlin
Thomas B. Schon
97
25
0
05 Nov 2015
1