ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.7461
  4. Cited By
Bayesian leave-one-out cross-validation approximations for Gaussian
  latent variable models
v1v2v3 (latest)

Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models

23 December 2014
Aki Vehtari
Tommi Mononen
Ville Tolvanen
Tuomas Sivula
Ole Winther
    UQCVBDL
ArXiv (abs)PDFHTML

Papers citing "Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models"

13 / 13 papers shown
Title
Using scientific machine learning for experimental bifurcation analysis
  of dynamic systems
Using scientific machine learning for experimental bifurcation analysis of dynamic systems
S. Beregi
David A.W. Barton
D. Rezgui
S. Neild
AI4CE
71
20
0
22 Oct 2021
Scalable Cross Validation Losses for Gaussian Process Models
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
60
6
0
24 May 2021
Approximate Cross-validated Mean Estimates for Bayesian Hierarchical
  Regression Models
Approximate Cross-validated Mean Estimates for Bayesian Hierarchical Regression Models
Amy Zhang
L. Bao
Changcheng Li
M. Daniels
50
1
0
29 Nov 2020
Bayesian model selection in the $\mathcal{M}$-open setting --
  Approximate posterior inference and probability-proportional-to-size
  subsampling for efficient large-scale leave-one-out cross-validation
Bayesian model selection in the M\mathcal{M}M-open setting -- Approximate posterior inference and probability-proportional-to-size subsampling for efficient large-scale leave-one-out cross-validation
Riko Kelter
60
0
0
27 May 2020
Bayesian leave-one-out cross-validation for large data
Bayesian leave-one-out cross-validation for large data
Måns Magnusson
Michael Riis Andersen
J. Jonasson
Aki Vehtari
108
26
0
24 Apr 2019
Bayesian comparison of latent variable models: Conditional vs marginal
  likelihoods
Bayesian comparison of latent variable models: Conditional vs marginal likelihoods
Edgar C. Merkle
Daniel Furr
S. Rabe-Hesketh
83
75
0
13 Feb 2018
Using stacking to average Bayesian predictive distributions
Using stacking to average Bayesian predictive distributions
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
105
342
0
06 Apr 2017
Markov Chain Monte Carlo with the Integrated Nested Laplace
  Approximation
Markov Chain Monte Carlo with the Integrated Nested Laplace Approximation
V. Gómez‐Rubio
H. Rue
92
71
0
26 Jan 2017
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process
  Models
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models
K. Krauth
Edwin V. Bonilla
Kurt Cutajar
Maurizio Filippone
GPBDL
61
54
0
18 Oct 2016
Posterior Dispersion Indices
Posterior Dispersion Indices
A. Kucukelbir
David M. Blei
27
0
0
24 May 2016
Practical Bayesian model evaluation using leave-one-out cross-validation
  and WAIC
Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC
Aki Vehtari
Andrew Gelman
Jonah Gabry
139
4,082
0
16 Jul 2015
Pareto Smoothed Importance Sampling
Pareto Smoothed Importance Sampling
Aki Vehtari
Daniel Simpson
Andrew Gelman
Yuling Yao
Jonah Gabry
145
242
0
09 Jul 2015
Comparison of Bayesian predictive methods for model selection
Comparison of Bayesian predictive methods for model selection
Juho Piironen
Aki Vehtari
103
280
0
30 Mar 2015
1