Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.8060
Cited By
Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity
27 December 2014
Zheng Qu
Peter Richtárik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Coordinate Descent with Arbitrary Sampling I: Algorithms and Complexity"
21 / 21 papers shown
Title
Single-Call Stochastic Extragradient Methods for Structured Non-monotone Variational Inequalities: Improved Analysis under Weaker Conditions
S. Choudhury
Eduard A. Gorbunov
Nicolas Loizou
32
13
0
27 Feb 2023
GradSkip: Communication-Accelerated Local Gradient Methods with Better Computational Complexity
Artavazd Maranjyan
M. Safaryan
Peter Richtárik
36
13
0
28 Oct 2022
Stochastic Extragradient: General Analysis and Improved Rates
Eduard A. Gorbunov
Hugo Berard
Gauthier Gidel
Nicolas Loizou
22
40
0
16 Nov 2021
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
42
0
0
26 Aug 2020
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
27
4
0
13 Feb 2020
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
SAGA with Arbitrary Sampling
Xun Qian
Zheng Qu
Peter Richtárik
37
25
0
24 Jan 2019
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
25
71
0
09 Sep 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
24
200
0
27 Dec 2017
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
38
184
0
15 Jun 2017
Faster Coordinate Descent via Adaptive Importance Sampling
Dmytro Perekrestenko
V. Cevher
Martin Jaggi
27
42
0
07 Mar 2017
Federated Learning: Strategies for Improving Communication Efficiency
Jakub Konecný
H. B. McMahan
Felix X. Yu
Peter Richtárik
A. Suresh
Dave Bacon
FedML
129
4,598
0
18 Oct 2016
A Primer on Coordinate Descent Algorithms
Hao-Jun Michael Shi
Shenyinying Tu
Yangyang Xu
W. Yin
40
90
0
30 Sep 2016
Importance Sampling for Minibatches
Dominik Csiba
Peter Richtárik
32
113
0
06 Feb 2016
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
44
172
0
30 Dec 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
38
273
0
16 Apr 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
61
97
0
27 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
31
176
0
12 Feb 2015
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Zheng Qu
Peter Richtárik
45
83
0
27 Dec 2014
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
79
317
0
18 Feb 2014
1