ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.8566
  4. Cited By
Accurate and Conservative Estimates of MRF Log-likelihood using Reverse
  Annealing

Accurate and Conservative Estimates of MRF Log-likelihood using Reverse Annealing

30 December 2014
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    TPM
ArXivPDFHTML

Papers citing "Accurate and Conservative Estimates of MRF Log-likelihood using Reverse Annealing"

19 / 19 papers shown
Title
Dequantified Diffusion-Schr{ö}dinger Bridge for Density Ratio Estimation
Dequantified Diffusion-Schr{ö}dinger Bridge for Density Ratio Estimation
Wei Chen
Shigui Li
Jiacheng Li
Junmei Yang
John Paisley
Delu Zeng
DiffM
OT
76
0
0
08 May 2025
Density Ratio Estimation with Conditional Probability Paths
Density Ratio Estimation with Conditional Probability Paths
Hanlin Yu
Arto Klami
Aapo Hyvarinen
Anna Korba
Omar Chehab
67
0
0
04 Feb 2025
Training Energy-Based Normalizing Flow with Score-Matching Objectives
Training Energy-Based Normalizing Flow with Score-Matching Objectives
Chen-Hao Chao
Wei-Fang Sun
Yen-Chang Hsu
Z. Kira
Chun-Yi Lee
33
3
0
24 May 2023
Reduce, Reuse, Recycle: Compositional Generation with Energy-Based
  Diffusion Models and MCMC
Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC
Yilun Du
Conor Durkan
Robin Strudel
J. Tenenbaum
Sander Dieleman
Rob Fergus
Jascha Narain Sohl-Dickstein
Arnaud Doucet
Will Grathwohl
DiffM
32
133
0
22 Feb 2023
Disentangling representations in Restricted Boltzmann Machines without
  adversaries
Disentangling representations in Restricted Boltzmann Machines without adversaries
Jorge Fernandez-de-Cossio-Diaz
Simona Cocco
R. Monasson
DRL
40
13
0
23 Jun 2022
Bounds all around: training energy-based models with bidirectional
  bounds
Bounds all around: training energy-based models with bidirectional bounds
Cong Geng
Jia Wang
Zhiyong Gao
J. Frellsen
Søren Hauberg
24
15
0
01 Nov 2021
Improving Bridge estimators via $f$-GAN
Improving Bridge estimators via fff-GAN
Hanwen Xing
OT
13
3
0
14 Jun 2021
A Brief Introduction to Generative Models
A Brief Introduction to Generative Models
Alex Lamb
GAN
VLM
22
16
0
27 Feb 2021
PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
  Bayesian Regime
PACm^mm-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
87
16
0
19 Oct 2020
Semi-Amortized Variational Autoencoders
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDL
DRL
33
243
0
07 Feb 2018
Variational Walkback: Learning a Transition Operator as a Stochastic
  Recurrent Net
Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net
Anirudh Goyal
Nan Rosemary Ke
Surya Ganguli
Yoshua Bengio
DiffM
35
55
0
07 Nov 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
Semi-Supervised Generation with Cluster-aware Generative Models
Semi-Supervised Generation with Cluster-aware Generative Models
Lars Maaløe
Marco Fraccaro
Ole Winther
23
28
0
03 Apr 2017
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
47
671
0
08 Nov 2016
Discrete Variational Autoencoders
Discrete Variational Autoencoders
J. Rolfe
BDL
DRL
35
254
0
07 Sep 2016
Measuring the reliability of MCMC inference with bidirectional Monte
  Carlo
Measuring the reliability of MCMC inference with bidirectional Monte Carlo
Roger C. Grosse
Siddharth Ancha
Daniel M. Roy
15
26
0
07 Jun 2016
Partition Functions from Rao-Blackwellized Tempered Sampling
Partition Functions from Rao-Blackwellized Tempered Sampling
David Carlson
Patrick Stinson
Ari Pakman
Liam Paninski
28
13
0
07 Mar 2016
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
38
1,236
0
01 Sep 2015
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Narain Sohl-Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
SyDa
DiffM
94
6,635
0
12 Mar 2015
1