ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.03291
  4. Cited By
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based
  Statistical Models

Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models

14 January 2015
Michael U. Gutmann
J. Corander
ArXivPDFHTML

Papers citing "Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models"

34 / 34 papers shown
Title
Misspecification-robust likelihood-free inference in high dimensions
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
66
9
0
17 Feb 2025
Bayesian Adaptive Calibration and Optimal Design
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
106
0
0
20 Jan 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
108
2
0
17 Jan 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
58
13
0
03 Jan 2025
Compositional simulation-based inference for time series
Compositional simulation-based inference for time series
Manuel Gloeckler
S. Toyota
Kenji Fukumizu
Jakob H Macke
34
1
0
05 Nov 2024
Full-waveform earthquake source inversion using simulation-based inference
Full-waveform earthquake source inversion using simulation-based inference
A. A. Saoulis
Davide Piras
A. Spurio Mancini
B. Joachimi
A. M. G. Ferreira
35
0
0
30 Oct 2024
Global Optimisation of Black-Box Functions with Generative Models in the
  Wasserstein Space
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
16
0
0
16 Jul 2024
Copula Approximate Bayesian Computation Using Distribution Random
  Forests
Copula Approximate Bayesian Computation Using Distribution Random Forests
G. Karabatsos
32
1
0
28 Feb 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with
  Intractable Likelihoods
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
16
0
0
30 Jan 2024
Optimal simulation-based Bayesian decisions
Optimal simulation-based Bayesian decisions
Justin Alsing
Thomas D. P. Edwards
Benjamin Dan Wandelt
15
2
0
09 Nov 2023
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
K. Ensinger
Sebastian Ziesche
Sebastian Trimpe
17
1
0
06 Sep 2023
A Bayesian Optimization approach for calibrating large-scale
  activity-based transport models
A Bayesian Optimization approach for calibrating large-scale activity-based transport models
S. Agriesti
Vladimir Kuzmanovski
Jaakko Hollmén
C. Roncoli
Bat-hen Nahmias-Biran
15
5
0
07 Feb 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
  Likelihood-Free Inference
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
36
12
0
27 Jan 2023
Differentiable User Models
Differentiable User Models
Alex Hamalainen
Mustafa Mert cCelikok
Samuel Kaski
17
1
0
29 Nov 2022
Simulation-based inference of Bayesian hierarchical models while
  checking for model misspecification
Simulation-based inference of Bayesian hierarchical models while checking for model misspecification
F. Leclercq
23
6
0
22 Sep 2022
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
19
3
0
04 Aug 2022
Nonparametric likelihood-free inference with Jensen-Shannon divergence
  for simulator-based models with categorical output
Nonparametric likelihood-free inference with Jensen-Shannon divergence for simulator-based models with categorical output
J. Corander
Ulpu Remes
Ida Holopainen
T. Koski
20
0
0
22 May 2022
Optimality in Noisy Importance Sampling
Optimality in Noisy Importance Sampling
F. Llorente
Luca Martino
Jesse Read
D. Delgado
12
5
0
07 Jan 2022
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
27
25
0
20 Dec 2021
Group equivariant neural posterior estimation
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
20
31
0
25 Nov 2021
Sequential Neural Posterior and Likelihood Approximation
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
15
33
0
12 Feb 2021
Likelihood-Free Inference with Deep Gaussian Processes
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
11
10
0
18 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
6
40
0
15 Jun 2020
Bayesian Experimental Design for Implicit Models by Mutual Information
  Neural Estimation
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
14
64
0
19 Feb 2020
On Contrastive Learning for Likelihood-free Inference
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
31
117
0
10 Feb 2020
Robust Optimisation Monte Carlo
Robust Optimisation Monte Carlo
Borislav Ikonomov
Michael U. Gutmann
9
8
0
01 Apr 2019
Bayesian inference using synthetic likelihood: asymptotics and
  adjustments
Bayesian inference using synthetic likelihood: asymptotics and adjustments
David T. Frazier
David J. Nott
Christopher C. Drovandi
Robert Kohn
16
40
0
13 Feb 2019
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
18
358
0
18 May 2018
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
T. Kajihara
Motonobu Kanagawa
Keisuke Yamazaki
Kenji Fukumizu
21
13
0
23 Feb 2018
ABCpy: A High-Performance Computing Perspective to Approximate Bayesian
  Computation
ABCpy: A High-Performance Computing Perspective to Approximate Bayesian Computation
Ritabrata Dutta
Marcel Schoengens
Lorenzo Pacchiardi
Avinash Ummadisingu
Nicole Widmer
Pierre Künzli
J. Onnela
Antonietta Mira
21
25
0
13 Nov 2017
Inverse Reinforcement Learning from Summary Data
Inverse Reinforcement Learning from Summary Data
A. Kangasrääsiö
Samuel Kaski
OffRL
17
15
0
28 Mar 2017
Learning in Implicit Generative Models
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
14
412
0
11 Oct 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
17
158
0
20 May 2016
Scalable Bayesian Inference for the Inverse Temperature of a Hidden
  Potts Model
Scalable Bayesian Inference for the Inverse Temperature of a Hidden Potts Model
M. Moores
Geoff K. Nicholls
A. Pettitt
Kerrie Mengersen
TPM
27
22
0
27 Mar 2015
1