Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.03291
Cited By
Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models
14 January 2015
Michael U. Gutmann
J. Corander
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models"
34 / 34 papers shown
Title
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
66
9
0
17 Feb 2025
Bayesian Adaptive Calibration and Optimal Design
Rafael Oliveira
Dino Sejdinovic
David Howard
Edwin Bonilla
106
0
0
20 Jan 2025
An efficient likelihood-free Bayesian inference method based on sequential neural posterior estimation
Yifei Xiong
Xiliang Yang
Sanguo Zhang
Zhijian He
108
2
0
17 Jan 2025
A survey of Monte Carlo methods for noisy and costly densities with application to reinforcement learning and ABC
F. Llorente
Luca Martino
Jesse Read
D. Delgado
OffRL
58
13
0
03 Jan 2025
Compositional simulation-based inference for time series
Manuel Gloeckler
S. Toyota
Kenji Fukumizu
Jakob H Macke
34
1
0
05 Nov 2024
Full-waveform earthquake source inversion using simulation-based inference
A. A. Saoulis
Davide Piras
A. Spurio Mancini
B. Joachimi
A. M. G. Ferreira
35
0
0
30 Oct 2024
Global Optimisation of Black-Box Functions with Generative Models in the Wasserstein Space
Tigran Ramazyan
M. Hushchyn
D. Derkach
16
0
0
16 Jul 2024
Copula Approximate Bayesian Computation Using Distribution Random Forests
G. Karabatsos
32
1
0
28 Feb 2024
Leveraging Nested MLMC for Sequential Neural Posterior Estimation with Intractable Likelihoods
Xiliang Yang
Yifei Xiong
Zhijian He
16
0
0
30 Jan 2024
Optimal simulation-based Bayesian decisions
Justin Alsing
Thomas D. P. Edwards
Benjamin Dan Wandelt
15
2
0
09 Nov 2023
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
K. Ensinger
Sebastian Ziesche
Sebastian Trimpe
17
1
0
06 Sep 2023
A Bayesian Optimization approach for calibrating large-scale activity-based transport models
S. Agriesti
Vladimir Kuzmanovski
Jaakko Hollmén
C. Roncoli
Bat-hen Nahmias-Biran
15
5
0
07 Feb 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
36
12
0
27 Jan 2023
Differentiable User Models
Alex Hamalainen
Mustafa Mert cCelikok
Samuel Kaski
17
1
0
29 Nov 2022
Simulation-based inference of Bayesian hierarchical models while checking for model misspecification
F. Leclercq
23
6
0
22 Sep 2022
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
19
3
0
04 Aug 2022
Nonparametric likelihood-free inference with Jensen-Shannon divergence for simulator-based models with categorical output
J. Corander
Ulpu Remes
Ida Holopainen
T. Koski
20
0
0
22 May 2022
Optimality in Noisy Importance Sampling
F. Llorente
Luca Martino
Jesse Read
D. Delgado
12
5
0
07 Jan 2022
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
27
25
0
20 Dec 2021
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
20
31
0
25 Nov 2021
Sequential Neural Posterior and Likelihood Approximation
Samuel Wiqvist
J. Frellsen
Umberto Picchini
BDL
15
33
0
12 Feb 2021
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
11
10
0
18 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
6
40
0
15 Jun 2020
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
14
64
0
19 Feb 2020
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
31
117
0
10 Feb 2020
Robust Optimisation Monte Carlo
Borislav Ikonomov
Michael U. Gutmann
9
8
0
01 Apr 2019
Bayesian inference using synthetic likelihood: asymptotics and adjustments
David T. Frazier
David J. Nott
Christopher C. Drovandi
Robert Kohn
16
40
0
13 Feb 2019
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
18
358
0
18 May 2018
Kernel Recursive ABC: Point Estimation with Intractable Likelihood
T. Kajihara
Motonobu Kanagawa
Keisuke Yamazaki
Kenji Fukumizu
21
13
0
23 Feb 2018
ABCpy: A High-Performance Computing Perspective to Approximate Bayesian Computation
Ritabrata Dutta
Marcel Schoengens
Lorenzo Pacchiardi
Avinash Ummadisingu
Nicole Widmer
Pierre Künzli
J. Onnela
Antonietta Mira
21
25
0
13 Nov 2017
Inverse Reinforcement Learning from Summary Data
A. Kangasrääsiö
Samuel Kaski
OffRL
17
15
0
28 Mar 2017
Learning in Implicit Generative Models
S. Mohamed
Balaji Lakshminarayanan
GAN
14
412
0
11 Oct 2016
Fast
ε
ε
ε
-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
17
158
0
20 May 2016
Scalable Bayesian Inference for the Inverse Temperature of a Hidden Potts Model
M. Moores
Geoff K. Nicholls
A. Pettitt
Kerrie Mengersen
TPM
27
22
0
27 Mar 2015
1