ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.05790
  4. Cited By
Taking a Deeper Look at Pedestrians

Taking a Deeper Look at Pedestrians

23 January 2015
J. Hosang
Mohamed Omran
Rodrigo Benenson
Bernt Schiele
ArXivPDFHTML

Papers citing "Taking a Deeper Look at Pedestrians"

22 / 22 papers shown
Title
Imagine the Unseen: Occluded Pedestrian Detection via Adversarial
  Feature Completion
Imagine the Unseen: Occluded Pedestrian Detection via Adversarial Feature Completion
Shanshan Zhang
Mingqian Ji
Yang Li
Jian Yang
41
1
0
02 May 2024
CircleNet: Reciprocating Feature Adaptation for Robust Pedestrian
  Detection
CircleNet: Reciprocating Feature Adaptation for Robust Pedestrian Detection
Tianliang Zhang
Zhenjun Han
Huijuan Xu
Baochang Zhang
QiXiang Ye
ObjD
14
10
0
12 Dec 2022
Towards Domain Generalization in Object Detection
Towards Domain Generalization in Object Detection
Xingxuan Zhang
Zekai Xu
Renzhe Xu
Jiashuo Liu
Peng Cui
Weitao Wan
Chong Sun
Chen Li
ObjD
OOD
20
21
0
27 Mar 2022
Generalizable Pedestrian Detection: The Elephant In The Room
Generalizable Pedestrian Detection: The Elephant In The Room
Irtiza Hasan
Shengcai Liao
Jinpeng Li
S. Akram
Ling Shao
13
27
0
19 Mar 2020
WiderPerson: A Diverse Dataset for Dense Pedestrian Detection in the
  Wild
WiderPerson: A Diverse Dataset for Dense Pedestrian Detection in the Wild
Shifeng Zhang
Yiliang Xie
Jun Wan
Hansheng Xia
Stan Z. Li
G. Guo
14
134
0
25 Sep 2019
Recent Advances in Deep Learning for Object Detection
Recent Advances in Deep Learning for Object Detection
Xiongwei Wu
Doyen Sahoo
S. Hoi
VLM
ObjD
30
794
0
10 Aug 2019
Deep Learning for Generic Object Detection: A Survey
Deep Learning for Generic Object Detection: A Survey
Li Liu
Wanli Ouyang
Xiaogang Wang
Paul Fieguth
Jie Chen
Xinwang Liu
M. Pietikäinen
ObjD
VLM
OOD
27
2,414
0
06 Sep 2018
Unsupervised Hard Example Mining from Videos for Improved Object
  Detection
Unsupervised Hard Example Mining from Videos for Improved Object Detection
SouYoung Jin
Aruni RoyChowdhury
Huaizu Jiang
Ashish Singh
Aditya Prasad
Deep Chakraborty
Erik Learned-Miller
ObjD
13
63
0
13 Aug 2018
Object Detection with Deep Learning: A Review
Object Detection with Deep Learning: A Review
Zhong-Qiu Zhao
Peng Zheng
Shou-tao Xu
Xindong Wu
ObjD
25
3,939
0
15 Jul 2018
The EuroCity Persons Dataset: A Novel Benchmark for Object Detection
The EuroCity Persons Dataset: A Novel Benchmark for Object Detection
Markus Braun
Sebastian Krebs
F. Flohr
D. Gavrila
ObjD
13
226
0
18 May 2018
A Survey on Deep Learning Methods for Robot Vision
A Survey on Deep Learning Methods for Robot Vision
Javier Ruiz-del-Solar
P. Loncomilla
Naiomi Soto
26
60
0
28 Mar 2018
Removing Confounding Factors Associated Weights in Deep Neural Networks
  Improves the Prediction Accuracy for Healthcare Applications
Removing Confounding Factors Associated Weights in Deep Neural Networks Improves the Prediction Accuracy for Healthcare Applications
Haohan Wang
Zhenglin Wu
Eric P. Xing
OOD
19
40
0
20 Mar 2018
Tracking by Prediction: A Deep Generative Model for Mutli-Person
  localisation and Tracking
Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking
Tharindu Fernando
Simon Denman
S. Sridharan
Clinton Fookes
14
62
0
09 Mar 2018
Aggregated Channels Network for Real-Time Pedestrian Detection
Aggregated Channels Network for Real-Time Pedestrian Detection
Farzin Ghorban
Javier Marín
Yu Su
A. Colombo
A. Kummert
ObjD
14
13
0
01 Jan 2018
Flexible Network Binarization with Layer-wise Priority
He Wang
Yi Tian Xu
Bingbing Ni
Hongteng Xu
MQ
18
10
0
13 Sep 2017
Choosing Smartly: Adaptive Multimodal Fusion for Object Detection in
  Changing Environments
Choosing Smartly: Adaptive Multimodal Fusion for Object Detection in Changing Environments
Oier Mees
Andreas Eitel
Wolfram Burgard
22
102
0
18 Jul 2017
Learning Cross-Modal Deep Representations for Robust Pedestrian
  Detection
Learning Cross-Modal Deep Representations for Robust Pedestrian Detection
Dan Xu
Wanli Ouyang
Elisa Ricci
Xiaogang Wang
N. Sebe
16
191
0
08 Apr 2017
To Boost or Not to Boost? On the Limits of Boosted Trees for Object
  Detection
To Boost or Not to Boost? On the Limits of Boosted Trees for Object Detection
Eshed Ohn-Bar
Mohan M. Trivedi
17
127
0
06 Jan 2017
Fused DNN: A deep neural network fusion approach to fast and robust
  pedestrian detection
Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection
Xianzhi Du
Mostafa El-Khamy
Jungwon Lee
L. Davis
20
274
0
11 Oct 2016
Real-Time RGB-D based Template Matching Pedestrian Detection
Real-Time RGB-D based Template Matching Pedestrian Detection
O. Jafari
M. Yang
13
13
0
03 Oct 2016
Pedestrian Detection Inspired by Appearance Constancy and Shape Symmetry
Pedestrian Detection Inspired by Appearance Constancy and Shape Symmetry
Jiale Cao
Yanwei Pang
Xuelong Li
21
85
0
25 Nov 2015
Deep convolutional neural networks for pedestrian detection
Deep convolutional neural networks for pedestrian detection
Denis Tomè
Federico Monti
L. Baroffio
Luca Bondi
Marco Tagliasacchi
Stefano Tubaro
3DH
22
193
0
13 Oct 2015
1