Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.06195
Cited By
Randomized sketches for kernels: Fast and optimal non-parametric regression
25 January 2015
Yun Yang
Mert Pilanci
Martin J. Wainwright
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Randomized sketches for kernels: Fast and optimal non-parametric regression"
50 / 64 papers shown
Title
Deep Sketched Output Kernel Regression for Structured Prediction
T. Ahmad
Junjie Yang
Pierre Laforgue
Florence dÁlché-Buc
UQCV
85
1
0
13 Jun 2024
A Bound on the Maximal Marginal Degrees of Freedom
Paul Dommel
191
1
0
20 Feb 2024
Spectral Regularized Kernel Goodness-of-Fit Tests
Omar Hagrass
Bharath K. Sriperumbudur
Bing Li
143
4
0
08 Aug 2023
Noisy recovery from random linear observations: Sharp minimax rates under elliptical constraints
Reese Pathak
Martin J. Wainwright
Lin Xiao
58
5
0
22 Mar 2023
A Distribution Free Truncated Kernel Ridge Regression Estimator and Related Spectral Analyses
Asma Ben Saber
Abderrazek Karoui
47
1
0
17 Jan 2023
Spectral Regularized Kernel Two-Sample Tests
Omar Hagrass
Bharath K. Sriperumbudur
Bing Li
75
15
0
19 Dec 2022
Regularized Stein Variational Gradient Flow
Ye He
Krishnakumar Balasubramanian
Bharath K. Sriperumbudur
Jianfeng Lu
OT
65
12
0
15 Nov 2022
Generalized Kernel Regularized Least Squares
Qing Chang
Max Goplerud
51
5
0
28 Sep 2022
Target alignment in truncated kernel ridge regression
Arash A. Amini
R. Baumgartner
Dai Feng
51
3
0
28 Jun 2022
Sampling with replacement vs Poisson sampling: a comparative study in optimal subsampling
Jing Wang
Jiahui Zou
Haiying Wang
78
18
0
17 May 2022
Optimally tackling covariate shift in RKHS-based nonparametric regression
Cong Ma
Reese Pathak
Martin J. Wainwright
64
45
0
06 May 2022
Sketching as a Tool for Understanding and Accelerating Self-attention for Long Sequences
Yifan Chen
Qi Zeng
Dilek Z. Hakkani-Tür
Di Jin
Heng Ji
Yun Yang
83
5
0
10 Dec 2021
Kernel-based estimation for partially functional linear model: Minimax rates and randomized sketches
Shaogao Lv
Xin He
Junhui Wang
67
1
0
18 Oct 2021
Optimal policy evaluation using kernel-based temporal difference methods
Yaqi Duan
Mengdi Wang
Martin J. Wainwright
OffRL
66
27
0
24 Sep 2021
Functional Principal Subspace Sampling for Large Scale Functional Data Analysis
Shiyuan He
Xiaomeng Yan
112
4
0
08 Sep 2021
Statistical Optimality and Computational Efficiency of Nyström Kernel PCA
Nicholas Sterge
Bharath K. Sriperumbudur
140
10
0
19 May 2021
Adaptive Newton Sketch: Linear-time Optimization with Quadratic Convergence and Effective Hessian Dimensionality
Jonathan Lacotte
Yifei Wang
Mert Pilanci
67
17
0
15 May 2021
An Efficient One-Class SVM for Anomaly Detection in the Internet of Things
Kun Yang
Samory Kpotufe
Nick Feamster
39
37
0
22 Apr 2021
Fast Statistical Leverage Score Approximation in Kernel Ridge Regression
Yifan Chen
Yun Yang
66
16
0
09 Mar 2021
Adaptive and Oblivious Randomized Subspace Methods for High-Dimensional Optimization: Sharp Analysis and Lower Bounds
Jonathan Lacotte
Mert Pilanci
112
12
0
13 Dec 2020
On the coercivity condition in the learning of interacting particle systems
Zhongyan Li
Fei Lu
72
4
0
20 Nov 2020
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
84
112
0
10 Aug 2020
Debiasing Distributed Second Order Optimization with Surrogate Sketching and Scaled Regularization
Michal Derezinski
Burak Bartan
Mert Pilanci
Michael W. Mahoney
59
27
0
02 Jul 2020
Consistent Online Gaussian Process Regression Without the Sample Complexity Bottleneck
Alec Koppel
Hrusikesha Pradhan
K. Rajawat
44
32
0
23 Apr 2020
Optimal Randomized First-Order Methods for Least-Squares Problems
Jonathan Lacotte
Mert Pilanci
91
30
0
21 Feb 2020
Optimal Iterative Sketching with the Subsampled Randomized Hadamard Transform
Jonathan Lacotte
Sifan Liu
Yan Sun
Mert Pilanci
76
8
0
03 Feb 2020
Sub-Gaussian Matrices on Sets: Optimal Tail Dependence and Applications
Halyun Jeong
Xiaowei Li
Y. Plan
Özgür Yilmaz
70
18
0
28 Jan 2020
Statistical Limits of Supervised Quantum Learning
C. Ciliberto
Andrea Rocchetto
Alessandro Rudi
Leonard Wossnig
58
4
0
28 Jan 2020
Adaptive Stopping Rule for Kernel-based Gradient Descent Algorithms
Xiangyu Chang
Shao-Bo Lin
46
0
0
09 Jan 2020
Low Rank Approximation for Smoothing Spline via Eigensystem Truncation
Danqing Xu
Yuedong Wang
23
2
0
23 Nov 2019
Concentration of kernel matrices with application to kernel spectral clustering
Arash A. Amini
Zahra S. Razaee
49
14
0
07 Sep 2019
Distributed Black-Box Optimization via Error Correcting Codes
Burak Bartan
Mert Pilanci
124
2
0
13 Jul 2019
Don't take it lightly: Phasing optical random projections with unknown operators
Sidharth Gupta
Rémi Gribonval
L. Daudet
Ivan Dokmanić
36
10
0
03 Jul 2019
High-Dimensional Optimization in Adaptive Random Subspaces
Jonathan Lacotte
Mert Pilanci
Marco Pavone
63
16
0
27 Jun 2019
Vecchia-Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data
Daniel Zilber
Matthias Katzfuss
84
34
0
18 Jun 2019
Spectrally-truncated kernel ridge regression and its free lunch
Arash A. Amini
52
6
0
14 Jun 2019
Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound
Lin F. Yang
Mengdi Wang
OffRL
GP
119
288
0
24 May 2019
Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel
k
k
k
-means Clustering
Manuel Fernández
David P. Woodruff
T. Yasuda
60
7
0
15 May 2019
An Introductory Guide to Fano's Inequality with Applications in Statistical Estimation
Jonathan Scarlett
Volkan Cevher
114
41
0
02 Jan 2019
Convex Relaxations of Convolutional Neural Nets
Burak Bartan
Mert Pilanci
103
5
0
31 Dec 2018
OverSketch: Approximate Matrix Multiplication for the Cloud
Vipul Gupta
Ryan Sherman
Thomas Courtade
Kannan Ramchandran
62
50
0
06 Nov 2018
Kernel Conjugate Gradient Methods with Random Projections
Bailey Kacsmar
Douglas R Stinson
54
4
0
05 Nov 2018
Asymptotics for Sketching in Least Squares Regression
Yan Sun
Sifan Liu
61
13
0
14 Oct 2018
Data-dependent compression of random features for large-scale kernel approximation
Raj Agrawal
Trevor Campbell
Jonathan H. Huggins
Tamara Broderick
51
20
0
09 Oct 2018
Streaming Kernel PCA with
O
~
(
n
)
\tilde{O}(\sqrt{n})
O
~
(
n
)
Random Features
Enayat Ullah
Poorya Mianjy
T. V. Marinov
R. Arora
129
22
0
02 Aug 2018
Matrix completion and extrapolation via kernel regression
Pere Giménez-Febrer
A. Pagés-Zamora
G. Giannakis
44
13
0
01 Aug 2018
Learning with SGD and Random Features
Luigi Carratino
Alessandro Rudi
Lorenzo Rosasco
83
78
0
17 Jul 2018
How Many Machines Can We Use in Parallel Computing for Kernel Ridge Regression?
Meimei Liu
Zuofeng Shang
Guang Cheng
52
8
0
25 May 2018
Sketching the order of events
Terry Lyons
Harald Oberhauser
43
5
0
31 Aug 2017
Frequentist coverage and sup-norm convergence rate in Gaussian process regression
Yun Yang
A. Bhattacharya
D. Pati
78
54
0
16 Aug 2017
1
2
Next