ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1501.06769
  4. Cited By
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
v1v2v3v4v5 (latest)

Particle Gibbs with Ancestor Sampling for Probabilistic Programs

27 January 2015
Jan-Willem van de Meent
Hongseok Yang
Vikash K. Mansinghka
Frank Wood
ArXiv (abs)PDFHTML

Papers citing "Particle Gibbs with Ancestor Sampling for Probabilistic Programs"

15 / 15 papers shown
Title
Marginalized particle Gibbs for multiple state-space models coupled
  through shared parameters
Marginalized particle Gibbs for multiple state-space models coupled through shared parameters
A. Wigren
Fredrik Lindsten
75
0
0
13 Oct 2022
Learning and Compositionality: a Unification Attempt via Connectionist
  Probabilistic Programming
Learning and Compositionality: a Unification Attempt via Connectionist Probabilistic Programming
Ximing Qiao
Hai Helen Li
23
0
0
26 Aug 2022
A Point Mass Proposal Method for Bayesian State-Space Model Fitting
A Point Mass Proposal Method for Bayesian State-Space Model Fitting
Mary Llewellyn
Ruth King
Victor Elvira
Gordon J. Ross
41
0
0
25 Mar 2022
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
83
21
0
21 Jun 2021
PClean: Bayesian Data Cleaning at Scale with Domain-Specific
  Probabilistic Programming
PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming
Alexander K. Lew
Monica Agrawal
David Sontag
Vikash K. Mansinghka
134
28
0
23 Jul 2020
Planning as Inference in Epidemiological Models
Planning as Inference in Epidemiological Models
Frank Wood
Andrew Warrington
Saeid Naderiparizi
Christian D. Weilbach
Vaden Masrani
...
Adam Scibior
Boyan Beronov
John Grefenstette
Duncan Campbell
Alireza Nasseri
59
6
0
30 Mar 2020
Stochastically Differentiable Probabilistic Programs
Stochastically Differentiable Probabilistic Programs
David Tolpin
Yuanshuo Zhou
Hongseok Yang
BDL
39
0
0
02 Mar 2020
Parameter elimination in particle Gibbs sampling
Parameter elimination in particle Gibbs sampling
A. Wigren
Riccardo Sven Risuleo
Lawrence M. Murray
Fredrik Lindsten
85
15
0
30 Oct 2019
Deployable probabilistic programming
Deployable probabilistic programming
David Tolpin
TPM
104
7
0
20 Jun 2019
Learning dynamical systems with particle stochastic approximation EM
Learning dynamical systems with particle stochastic approximation EM
Andreas Svensson
Fredrik Lindsten
105
9
0
25 Jun 2018
Bayesian Inference of Regular Expressions from Human-Generated Example
  Strings
Bayesian Inference of Regular Expressions from Human-Generated Example Strings
O. Long
18
4
0
22 May 2018
Spreadsheet Probabilistic Programming
Spreadsheet Probabilistic Programming
Mike Wu
Yura N. Perov
Frank Wood
Hongseok Yang
49
3
0
14 Jun 2016
Applications of Probabilistic Programming (Master's thesis, 2015)
Applications of Probabilistic Programming (Master's thesis, 2015)
Yura N. Perov
55
4
0
31 May 2016
Interacting Particle Markov Chain Monte Carlo
Interacting Particle Markov Chain Monte Carlo
Tom Rainforth
C. A. Naesseth
Fredrik Lindsten
Brooks Paige
Jan-Willem van de Meent
Arnaud Doucet
Frank Wood
74
34
0
16 Feb 2016
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs
Output-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs
David Tolpin
Jan-Willem van de Meent
Brooks Paige
Frank Wood
66
1
0
22 Jan 2015
1