Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.02268
Cited By
SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization
8 February 2015
Zheng Qu
Peter Richtárik
Martin Takáč
Olivier Fercoq
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization"
25 / 25 papers shown
Title
Sketch-and-Project Meets Newton Method: Global
O
(
k
−
2
)
\mathcal O(k^{-2})
O
(
k
−
2
)
Convergence with Low-Rank Updates
Slavomír Hanzely
33
6
0
22 May 2023
Polynomial Preconditioning for Gradient Methods
N. Doikov
Anton Rodomanov
26
1
0
30 Jan 2023
A Randomised Subspace Gauss-Newton Method for Nonlinear Least-Squares
C. Cartis
J. Fowkes
Zhen Shao
24
11
0
10 Nov 2022
ALS: Augmented Lagrangian Sketching Methods for Linear Systems
M. Morshed
36
0
0
12 Aug 2022
SP2: A Second Order Stochastic Polyak Method
Shuang Li
W. Swartworth
Martin Takávc
Deanna Needell
Robert Mansel Gower
29
13
0
17 Jul 2022
Augmented Newton Method for Optimization: Global Linear Rate and Momentum Interpretation
M. Morshed
ODL
29
1
0
23 May 2022
Stability and Generalization for Randomized Coordinate Descent
Puyu Wang
Liang Wu
Yunwen Lei
27
7
0
17 Aug 2021
Adaptive Newton Sketch: Linear-time Optimization with Quadratic Convergence and Effective Hessian Dimensionality
Jonathan Lacotte
Yifei Wang
Mert Pilanci
18
15
0
15 May 2021
Efficient Global Optimization of Non-differentiable, Symmetric Objectives for Multi Camera Placement
Maria L. Hanel
Carola-B. Schönlieb
17
10
0
20 Mar 2021
Adaptive and Oblivious Randomized Subspace Methods for High-Dimensional Optimization: Sharp Analysis and Lower Bounds
Jonathan Lacotte
Mert Pilanci
20
11
0
13 Dec 2020
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
24
112
0
02 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
42
0
0
26 Aug 2020
Precise expressions for random projections: Low-rank approximation and randomized Newton
Michal Derezinski
Feynman T. Liang
Zhenyu A. Liao
Michael W. Mahoney
34
23
0
18 Jun 2020
Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling
Mojmír Mutný
Michal Derezinski
Andreas Krause
38
21
0
25 Oct 2019
Don't Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are Better Without the Outer Loop
D. Kovalev
Samuel Horváth
Peter Richtárik
36
155
0
24 Jan 2019
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
25
71
0
09 Sep 2018
Dual optimization for convex constrained objectives without the gradient-Lipschitz assumption
Martin Bompaire
Emmanuel Bacry
Stéphane Gaïffas
25
6
0
10 Jul 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
24
200
0
27 Dec 2017
Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method
Mark Eisen
Aryan Mokhtari
Alejandro Ribeiro
35
16
0
22 May 2017
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
71
1,877
0
08 Oct 2016
Randomized block proximal damped Newton method for composite self-concordant minimization
Zhaosong Lu
22
11
0
01 Jul 2016
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy
Aryan Mokhtari
Alejandro Ribeiro
ODL
25
32
0
24 May 2016
L1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework
Virginia Smith
Simone Forte
Michael I. Jordan
Martin Jaggi
28
28
0
13 Dec 2015
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning
Julien Mairal
79
317
0
18 Feb 2014
1