Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1502.02590
Cited By
Analysis of classifiers' robustness to adversarial perturbations
9 February 2015
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Analysis of classifiers' robustness to adversarial perturbations"
39 / 39 papers shown
Title
A Survey of Neural Network Robustness Assessment in Image Recognition
Jie Wang
Jun Ai
Minyan Lu
Haoran Su
Dan Yu
Yutao Zhang
Junda Zhu
Jingyu Liu
AAML
28
3
0
12 Apr 2024
When are Local Queries Useful for Robust Learning?
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
OOD
27
1
0
12 Oct 2022
GAMA: Generative Adversarial Multi-Object Scene Attacks
Abhishek Aich
Calvin-Khang Ta
Akash Gupta
Chengyu Song
S. Krishnamurthy
M. Salman Asif
A. Roy-Chowdhury
AAML
36
17
0
20 Sep 2022
An Efficient Method for Sample Adversarial Perturbations against Nonlinear Support Vector Machines
Wen Su
Qingna Li
AAML
11
0
0
12 Jun 2022
Building Robust Ensembles via Margin Boosting
Dinghuai Zhang
Hongyang R. Zhang
Aaron Courville
Yoshua Bengio
Pradeep Ravikumar
A. Suggala
AAML
UQCV
35
15
0
07 Jun 2022
Attacking and Defending Deep Reinforcement Learning Policies
Chao Wang
AAML
20
2
0
16 May 2022
Sample Complexity Bounds for Robustly Learning Decision Lists against Evasion Attacks
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
AAML
11
5
0
12 May 2022
The Effects of Regularization and Data Augmentation are Class Dependent
Randall Balestriero
Léon Bottou
Yann LeCun
28
94
0
07 Apr 2022
Attack Transferability Characterization for Adversarially Robust Multi-label Classification
Zhuo Yang
Yufei Han
Xiangliang Zhang
AAML
14
4
0
29 Jun 2021
A Unified Game-Theoretic Interpretation of Adversarial Robustness
Jie Ren
Die Zhang
Yisen Wang
Lu Chen
Zhanpeng Zhou
...
Xu Cheng
Xin Eric Wang
Meng Zhou
Jie Shi
Quanshi Zhang
AAML
64
22
0
12 Mar 2021
Achieving Adversarial Robustness Requires An Active Teacher
Chao Ma
Lexing Ying
19
1
0
14 Dec 2020
Recent Advances in Understanding Adversarial Robustness of Deep Neural Networks
Tao Bai
Jinqi Luo
Jun Zhao
AAML
41
8
0
03 Nov 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
19
48
0
19 Oct 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
17
73
0
07 Aug 2020
Adversarial Attacks against Neural Networks in Audio Domain: Exploiting Principal Components
Ken Alparslan
Yigit Can Alparslan
Matthew Burlick
AAML
11
8
0
14 Jul 2020
On Counterfactual Explanations under Predictive Multiplicity
Martin Pawelczyk
Klaus Broelemann
Gjergji Kasneci
17
85
0
23 Jun 2020
Spanning Attack: Reinforce Black-box Attacks with Unlabeled Data
Lu Wang
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
Yuan Jiang
AAML
21
12
0
11 May 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
50
63
0
02 Mar 2020
Understanding and Quantifying Adversarial Examples Existence in Linear Classification
Xupeng Shi
A. Ding
AAML
14
3
0
27 Oct 2019
Cross-Domain Transferability of Adversarial Perturbations
Muzammal Naseer
Salman H. Khan
M. H. Khan
F. Khan
Fatih Porikli
AAML
19
9
0
28 May 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
21
40
0
03 Mar 2019
Stable and Fair Classification
Lingxiao Huang
Nisheeth K. Vishnoi
FaML
19
71
0
21 Feb 2019
PeerNets: Exploiting Peer Wisdom Against Adversarial Attacks
Jan Svoboda
Jonathan Masci
Federico Monti
M. Bronstein
Leonidas J. Guibas
AAML
GNN
33
41
0
31 May 2018
Laplacian Networks: Bounding Indicator Function Smoothness for Neural Network Robustness
Carlos Lassance
Vincent Gripon
Antonio Ortega
AAML
13
16
0
24 May 2018
Robust GANs against Dishonest Adversaries
Zhi Xu
Chengtao Li
Stefanie Jegelka
AAML
26
3
0
27 Feb 2018
Security Analysis and Enhancement of Model Compressed Deep Learning Systems under Adversarial Attacks
Qi Liu
Tao Liu
Zihao Liu
Yanzhi Wang
Yier Jin
Wujie Wen
AAML
27
48
0
14 Feb 2018
A3T: Adversarially Augmented Adversarial Training
Akram Erraqabi
A. Baratin
Yoshua Bengio
Simon Lacoste-Julien
AAML
22
9
0
12 Jan 2018
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Jason Jo
Yoshua Bengio
AAML
17
249
0
30 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
A. Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
33
11,825
0
19 Jun 2017
Robustness of classifiers to universal perturbations: a geometric perspective
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
Stefano Soatto
AAML
21
118
0
26 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
19
796
0
28 Apr 2017
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick D. McDaniel
AAML
SILM
19
554
0
11 Apr 2017
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
22
2,509
0
26 Oct 2016
Safety Verification of Deep Neural Networks
Xiaowei Huang
M. Kwiatkowska
Sen Wang
Min Wu
AAML
178
931
0
21 Oct 2016
Fine-grained Recognition in the Noisy Wild: Sensitivity Analysis of Convolutional Neural Networks Approaches
E. Rodner
Marcel Simon
Robert B. Fisher
Joachim Denzler
13
39
0
21 Oct 2016
Towards Verified Artificial Intelligence
S. Seshia
Dorsa Sadigh
S. Shankar Sastry
13
203
0
27 Jun 2016
Exploring the Space of Adversarial Images
Pedro Tabacof
Eduardo Valle
AAML
12
191
0
19 Oct 2015
Improving Back-Propagation by Adding an Adversarial Gradient
Arild Nøkland
AAML
19
32
0
14 Oct 2015
Evasion and Hardening of Tree Ensemble Classifiers
Alex Kantchelian
J. D. Tygar
A. Joseph
AAML
6
206
0
25 Sep 2015
1