ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1502.03175
  4. Cited By
Proximal Algorithms in Statistics and Machine Learning
v1v2v3 (latest)

Proximal Algorithms in Statistics and Machine Learning

11 February 2015
Nicholas G. Polson
James G. Scott
Brandon T. Willard
ArXiv (abs)PDFHTML

Papers citing "Proximal Algorithms in Statistics and Machine Learning"

23 / 23 papers shown
Title
Measurement to Meaning: A Validity-Centered Framework for AI Evaluation
Measurement to Meaning: A Validity-Centered Framework for AI Evaluation
Olawale Salaudeen
Anka Reuel
Ahmed M. Ahmed
Suhana Bedi
Zachary Robertson
Siyang Song
Ben Domingue
Angelina Wang
Sanmi Koyejo
ELM
58
0
0
13 May 2025
Connecting NTK and NNGP: A Unified Theoretical Framework for Wide Neural Network Learning Dynamics
Connecting NTK and NNGP: A Unified Theoretical Framework for Wide Neural Network Learning Dynamics
Yehonatan Avidan
Qianyi Li
H. Sompolinsky
133
8
0
08 Sep 2023
Riesz-Quincunx-UNet Variational Auto-Encoder for Satellite Image
  Denoising
Riesz-Quincunx-UNet Variational Auto-Encoder for Satellite Image Denoising
D. H. Thai
Xiqi Fei
M. T. Le
Andreas Zufle
K. Wessels
29
13
0
25 Aug 2022
Equivariant Hypergraph Diffusion Neural Operators
Equivariant Hypergraph Diffusion Neural Operators
Peihao Wang
Shenghao Yang
Yunyu Liu
Zhangyang Wang
Pan Li
DiffM
98
35
0
14 Jul 2022
Bayesian Learning of Parameterised Quantum Circuits
Bayesian Learning of Parameterised Quantum Circuits
Samuel Duffield
Marcello Benedetti
Matthias Rosenkranz
55
11
0
15 Jun 2022
Robust online joint state/input/parameter estimation of linear systems
Robust online joint state/input/parameter estimation of linear systems
Jean-Sébastien Brouillon
Keith Moffat
Florian Dorfler
Giancarlo Ferrari-Trecate
51
4
0
12 Apr 2022
Bayesian Error-in-Variables Models for the Identification of Power
  Networks
Bayesian Error-in-Variables Models for the Identification of Power Networks
Jean-Sébastien Brouillon
E. Fabbiani
P. Nahata
Keith Moffat
Florian Dorfler
Giancarlo Ferrari-Trecate
23
6
0
09 Jul 2021
Active-set algorithms based statistical inference for shape-restricted
  generalized additive Cox regression models
Active-set algorithms based statistical inference for shape-restricted generalized additive Cox regression models
Geng Deng
Guangning Xu
Qiang Fu
Xindong Wang
Jing Qin
44
1
0
29 Jun 2021
Gradient-Based Markov Chain Monte Carlo for Bayesian Inference With
  Non-Differentiable Priors
Gradient-Based Markov Chain Monte Carlo for Bayesian Inference With Non-Differentiable Priors
Jacob Vorstrup Goldman
Torben Sell
Sumeetpal S. Singh
40
8
0
16 Mar 2021
Distributed Proximal Splitting Algorithms with Rates and Acceleration
Distributed Proximal Splitting Algorithms with Rates and Acceleration
Laurent Condat
Grigory Malinovsky
Peter Richtárik
58
21
0
02 Oct 2020
Additive stacking for disaggregate electricity demand forecasting
Additive stacking for disaggregate electricity demand forecasting
Christian Capezza
B. Palumbo
Y. Goude
S. Wood
Matteo Fasiolo
AI4TS
71
7
0
20 May 2020
GENO -- GENeric Optimization for Classical Machine Learning
GENO -- GENeric Optimization for Classical Machine Learning
Soren Laue
Matthias Mitterreiter
Joachim Giesen
AI4CE
42
18
0
31 May 2019
Online Learning over Dynamic Graphs via Distributed Proximal Gradient
  Algorithm
Online Learning over Dynamic Graphs via Distributed Proximal Gradient Algorithm
Rishabh Dixit
Amrit Singh Bedi
K. Rajawat
48
32
0
16 May 2019
A Distributed Method for Fitting Laplacian Regularized Stratified Models
A Distributed Method for Fitting Laplacian Regularized Stratified Models
Jonathan Tuck
Shane T. Barratt
Stephen P. Boyd
60
24
0
26 Apr 2019
Fast Non-Bayesian Poisson Factorization for Implicit-Feedback
  Recommendations
Fast Non-Bayesian Poisson Factorization for Implicit-Feedback Recommendations
David Cortes
56
1
0
05 Nov 2018
Sparse Group Inductive Matrix Completion
Sparse Group Inductive Matrix Completion
Ivan Nazarov
B. Shirokikh
M. Burkina
G. Fedonin
Maxim Panov
70
10
0
27 Apr 2018
Rendition: Reclaiming what a black box takes away
Rendition: Reclaiming what a black box takes away
P. Milanfar
56
12
0
23 Apr 2018
Generalized Linear Model Regression under Distance-to-set Penalties
Generalized Linear Model Regression under Distance-to-set Penalties
Jason Xu
Eric C. Chi
K. Lange
109
36
0
03 Nov 2017
Sparse Regularization in Marketing and Economics
Sparse Regularization in Marketing and Economics
Guanhao Feng
Nicholas G. Polson
Yuexi Wang
Jianeng Xu
59
1
0
01 Sep 2017
Deep Learning: A Bayesian Perspective
Deep Learning: A Bayesian Perspective
Nicholas G. Polson
Vadim Sokolov
BDL
109
117
0
01 Jun 2017
Bayesian $l_0$-regularized Least Squares
Bayesian l0l_0l0​-regularized Least Squares
Nicholas G. Polson
Lei Sun
135
21
0
31 May 2017
Efficient Bayesian computation by proximal Markov chain Monte Carlo:
  when Langevin meets Moreau
Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau
Alain Durmus
Eric Moulines
Marcelo Pereyra
88
176
0
22 Dec 2016
Deep Learning in Finance
Deep Learning in Finance
J. B. Heaton
Nicholas G. Polson
J. Witte
80
168
0
21 Feb 2016
1