ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1503.01916
  4. Cited By
Hamiltonian ABC

Hamiltonian ABC

6 March 2015
Edward Meeds
R. Leenders
Max Welling
    BDL
ArXiv (abs)PDFHTML

Papers citing "Hamiltonian ABC"

21 / 21 papers shown
Title
Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
  Model of COVID-19 Hospital Trajectories
Approximate Bayesian Computation for an Explicit-Duration Hidden Markov Model of COVID-19 Hospital TrajectoriesMachine Learning in Health Care (MLHC), 2021
Gian Marco Visani
A. Lee
C. Nguyen
David M Kent
J. Wong
Joshua T. Cohen
M. C. Hughes
OOD
149
1
0
28 Apr 2021
Neural Approximate Sufficient Statistics for Implicit Models
Neural Approximate Sufficient Statistics for Implicit ModelsInternational Conference on Learning Representations (ICLR), 2020
Yanzhi Chen
Dinghuai Zhang
Michael U. Gutmann
Aaron Courville
Zhanxing Zhu
546
95
0
20 Oct 2020
Langevin Monte Carlo: random coordinate descent and variance reduction
Langevin Monte Carlo: random coordinate descent and variance reductionJournal of machine learning research (JMLR), 2020
Zhiyan Ding
Qin Li
BDL
578
13
0
26 Jul 2020
Variance reduction for Random Coordinate Descent-Langevin Monte Carlo
Variance reduction for Random Coordinate Descent-Langevin Monte Carlo
Zhiyan Ding
Qin Li
BDL
281
0
0
10 Jun 2020
Neural Density Estimation and Likelihood-free Inference
Neural Density Estimation and Likelihood-free Inference
George Papamakarios
BDLDRL
195
51
0
29 Oct 2019
Privacy-preserving Federated Bayesian Learning of a Generative Model for
  Imbalanced Classification of Clinical Data
Privacy-preserving Federated Bayesian Learning of a Generative Model for Imbalanced Classification of Clinical Data
S. Hahn
Junghye Lee
FedML
189
5
0
18 Oct 2019
BSL: An R Package for Efficient Parameter Estimation for
  Simulation-Based Models via Bayesian Synthetic Likelihood
BSL: An R Package for Efficient Parameter Estimation for Simulation-Based Models via Bayesian Synthetic LikelihoodJournal of Statistical Software (JSS), 2019
Ziwen An
Leah F. South
Christopher C. Drovandi
163
14
0
25 Jul 2019
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans
Volodimir Begy
Gilles Louppe
386
20
0
10 Mar 2019
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CETPM
462
195
0
30 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
798
415
0
18 May 2018
ABC Samplers
ABC Samplers
Y. Fan
Scott A. Sisson
161
30
0
26 Feb 2018
Easy High-Dimensional Likelihood-Free Inference
Easy High-Dimensional Likelihood-Free Inference
Vinay Jethava
Devdatt Dubhashi
BDLGAN
510
3
0
29 Nov 2017
Flexible statistical inference for mechanistic models of neural dynamics
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
306
287
0
06 Nov 2017
Adversarial Variational Optimization of Non-Differentiable Simulators
Adversarial Variational Optimization of Non-Differentiable Simulators
Gilles Louppe
Joeri Hermans
Kyle Cranmer
GAN
398
69
0
22 Jul 2017
Pseudo-Marginal Hamiltonian Monte Carlo
Pseudo-Marginal Hamiltonian Monte CarloJournal of machine learning research (JMLR), 2016
Johan Alenlöv
Arnaud Doucet
Fredrik Lindsten
196
23
0
08 Jul 2016
Automatic Variational ABC
Automatic Variational ABC
Alexander Moreno
T. Adel
Edward Meeds
James M. Rehg
Max Welling
280
12
0
28 Jun 2016
Asymptotically exact inference in differentiable generative models
Asymptotically exact inference in differentiable generative models
Matthew M. Graham
Amos J. Storkey
BDL
413
35
0
25 May 2016
Fast $ε$-free Inference of Simulation Models with Bayesian
  Conditional Density Estimation
Fast εεε-free Inference of Simulation Models with Bayesian Conditional Density Estimation
George Papamakarios
Iain Murray
TPM
355
165
0
20 May 2016
A Markov Jump Process for More Efficient Hamiltonian Monte Carlo
A Markov Jump Process for More Efficient Hamiltonian Monte Carlo
A. Berger
M. Mudigonda
M. DeWeese
Jascha Narain Sohl-Dickstein
233
1
0
13 Sep 2015
Optimization Monte Carlo: Efficient and Embarrassingly Parallel
  Likelihood-Free Inference
Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free InferenceNeural Information Processing Systems (NeurIPS), 2015
Edward Meeds
Max Welling
263
35
0
11 Jun 2015
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential
  Families
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential FamiliesNeural Information Processing Systems (NeurIPS), 2015
Heiko Strathmann
Dino Sejdinovic
Samuel Livingstone
Z. Szabó
Arthur Gretton
BDL
173
76
0
08 Jun 2015
1