Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1504.04406
Cited By
Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields
16 April 2015
Mark Schmidt
Reza Babanezhad
Mohamed Osama Ahmed
Aaron Defazio
Ann Clifton
Anoop Sarkar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Non-Uniform Stochastic Average Gradient Method for Training Conditional Random Fields"
19 / 19 papers shown
Title
L-DQN: An Asynchronous Limited-Memory Distributed Quasi-Newton Method
Bugra Can
Saeed Soori
M. Dehnavi
Mert Gurbuzbalaban
45
2
0
20 Aug 2021
Structured Convolutional Kernel Networks for Airline Crew Scheduling
Yassine Yaakoubi
F. Soumis
Simon Lacoste-Julien
AI4TS
26
10
0
25 May 2021
SVRG Meets AdaGrad: Painless Variance Reduction
Benjamin Dubois-Taine
Sharan Vaswani
Reza Babanezhad
Mark Schmidt
Simon Lacoste-Julien
23
18
0
18 Feb 2021
Variance-Reduced Methods for Machine Learning
Robert Mansel Gower
Mark Schmidt
Francis R. Bach
Peter Richtárik
24
112
0
02 Oct 2020
Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
27
4
0
13 Feb 2020
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates
Sharan Vaswani
Aaron Mishkin
I. Laradji
Mark Schmidt
Gauthier Gidel
Simon Lacoste-Julien
ODL
41
205
0
24 May 2019
Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
Martin Morin
Pontus Giselsson
20
2
0
21 Mar 2019
Estimate Sequences for Stochastic Composite Optimization: Variance Reduction, Acceleration, and Robustness to Noise
A. Kulunchakov
Julien Mairal
34
44
0
25 Jan 2019
SAGA with Arbitrary Sampling
Xun Qian
Zheng Qu
Peter Richtárik
37
25
0
24 Jan 2019
A Universally Optimal Multistage Accelerated Stochastic Gradient Method
N. Aybat
Alireza Fallah
Mert Gurbuzbalaban
Asuman Ozdaglar
ODL
24
57
0
23 Jan 2019
Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields
Rémi Le Priol
Alexandre Piché
Simon Lacoste-Julien
28
5
0
22 Dec 2017
Safe Adaptive Importance Sampling
Sebastian U. Stich
Anant Raj
Martin Jaggi
35
54
0
07 Nov 2017
Determinantal Point Processes for Mini-Batch Diversification
Cheng Zhang
Hedvig Kjellström
Stephan Mandt
27
35
0
01 May 2017
Coupling Adaptive Batch Sizes with Learning Rates
Lukas Balles
Javier Romero
Philipp Hennig
ODL
21
110
0
15 Dec 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
71
1,877
0
08 Oct 2016
Stochastic Variance Reduction Methods for Saddle-Point Problems
B. Palaniappan
Francis R. Bach
18
210
0
20 May 2016
Online Batch Selection for Faster Training of Neural Networks
I. Loshchilov
Frank Hutter
ODL
41
298
0
19 Nov 2015
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
93
737
0
19 Mar 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
114
1,244
0
10 Sep 2013
1