ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1504.07245
  4. Cited By
Approximate Bayesian Computation for Forward Modeling in Cosmology
v1v2v3 (latest)

Approximate Bayesian Computation for Forward Modeling in Cosmology

27 April 2015
Joel Akeret
Alexandre Réfrégier
A. Amara
Sebastian Seehars
C. Hasner
ArXiv (abs)PDFHTML

Papers citing "Approximate Bayesian Computation for Forward Modeling in Cosmology"

13 / 13 papers shown
Title
Likelihood-Free Inference and Hierarchical Data Assimilation for
  Geological Carbon Storage
Likelihood-Free Inference and Hierarchical Data Assimilation for Geological Carbon Storage
Wenchao Teng
Louis J. Durlofsky
56
0
0
20 Oct 2024
Discovering governing equation in structural dynamics from
  acceleration-only measurements
Discovering governing equation in structural dynamics from acceleration-only measurements
Calvin Alvares
Souvik Chakraborty
76
0
0
18 Jul 2024
Deep Learning and genetic algorithms for cosmological Bayesian inference
  speed-up
Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up
Isidro Gómez-Vargas
J. A. Vázquez
BDL
128
3
0
06 May 2024
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
  Likelihood-Free Inference
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
131
15
0
27 Jan 2023
Approximate Bayesian Computation with Domain Expert in the Loop
Approximate Bayesian Computation with Domain Expert in the Loop
Ayush Bharti
Louis Filstroff
Samuel Kaski
TPM
133
9
0
28 Jan 2022
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal
  Neural Ratio Estimation
Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation
A. Cole
Benjamin Kurt Miller
S. Witte
Maxwell X. Cai
M. Grootes
F. Nattino
Christoph Weniger
76
42
0
15 Nov 2021
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian
  parameter inference for partially observed stochastic processes
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
D. Warne
Thomas P. Prescott
Ruth Baker
Matthew J. Simpson
67
16
0
26 Oct 2021
Hybrid analytic and machine-learned baryonic property insertion into
  galactic dark matter haloes
Hybrid analytic and machine-learned baryonic property insertion into galactic dark matter haloes
Ben Moews
R. Davé
Sourav Mitra
Sultan Hassan
W. Cui
AI4CE
134
7
0
10 Dec 2020
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at
  Scale
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale
A. G. Baydin
Lei Shao
W. Bhimji
Lukas Heinrich
Lawrence Meadows
...
Philip Torr
Victor W. Lee
Kyle Cranmer
P. Prabhat
Frank Wood
80
58
0
08 Jul 2019
Gaussbock: Fast parallel-iterative cosmological parameter estimation
  with Bayesian nonparametrics
Gaussbock: Fast parallel-iterative cosmological parameter estimation with Bayesian nonparametrics
Ben Moews
J. Zuntz
45
2
0
23 May 2019
Machine Learning Accelerated Likelihood-Free Event Reconstruction in
  Dark Matter Direct Detection
Machine Learning Accelerated Likelihood-Free Event Reconstruction in Dark Matter Direct Detection
U. Simola
B. Pelssers
D. Barge
J. Conrad
J. Corander
144
11
0
23 Oct 2018
Bootstrapped synthetic likelihood
Bootstrapped synthetic likelihood
R. Everitt
231
14
0
15 Nov 2017
Accelerating Approximate Bayesian Computation with Quantile Regression:
  Application to Cosmological Redshift Distributions
Accelerating Approximate Bayesian Computation with Quantile Regression: Application to Cosmological Redshift Distributions
T. Kacprzak
J. Herbel
A. Amara
Alexandre Réfrégier
136
26
0
24 Jul 2017
1