ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRL
    BDL
ArXivPDFHTML

Papers citing "Variational Inference with Normalizing Flows"

22 / 922 papers shown
Title
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
47
671
0
08 Nov 2016
Learning to Draw Samples: With Application to Amortized MLE for
  Generative Adversarial Learning
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GAN
BDL
38
118
0
06 Nov 2016
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
22
452
0
30 Sep 2016
Variational Inference with Hamiltonian Monte Carlo
Variational Inference with Hamiltonian Monte Carlo
Christopher Wolf
Maximilian Karl
Patrick van der Smagt
BDL
23
37
0
26 Sep 2016
Discrete Variational Autoencoders
Discrete Variational Autoencoders
J. Rolfe
BDL
DRL
35
254
0
07 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
19
1,073
0
16 Aug 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
55
1,798
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
97
3,648
0
26 May 2016
Gaussian variational approximation with sparse precision matrices
Gaussian variational approximation with sparse precision matrices
Linda S. L. Tan
David J. Nott
35
76
0
18 May 2016
One-Shot Generalization in Deep Generative Models
One-Shot Generalization in Deep Generative Models
Danilo Jimenez Rezende
S. Mohamed
Ivo Danihelka
Karol Gregor
Daan Wierstra
BDL
VLM
DRL
LRM
30
254
0
16 Mar 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
47
709
0
02 Mar 2016
Variational inference for Monte Carlo objectives
Variational inference for Monte Carlo objectives
A. Mnih
Danilo Jimenez Rezende
DRL
BDL
52
288
0
22 Feb 2016
Variational Inference for Sparse and Undirected Models
Variational Inference for Sparse and Undirected Models
John Ingraham
D. Marks
22
8
0
11 Feb 2016
Black box variational inference for state space models
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
37
160
0
23 Nov 2015
The Variational Gaussian Process
The Variational Gaussian Process
Dustin Tran
Rajesh Ranganath
David M. Blei
BDL
37
184
0
20 Nov 2015
Generating Sentences from a Continuous Space
Generating Sentences from a Continuous Space
Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafal Jozefowicz
Samy Bengio
DRL
34
2,343
0
19 Nov 2015
Super-Resolution with Deep Convolutional Sufficient Statistics
Super-Resolution with Deep Convolutional Sufficient Statistics
Joan Bruna
Pablo Sprechmann
Yann LeCun
SupR
28
323
0
18 Nov 2015
Deep Kalman Filters
Deep Kalman Filters
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
36
370
0
16 Nov 2015
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
28
335
0
07 Nov 2015
Stochastic gradient descent methods for estimation with large data sets
Stochastic gradient descent methods for estimation with large data sets
Dustin Tran
Panos Toulis
E. Airoldi
14
14
0
22 Sep 2015
Importance Weighted Autoencoders
Importance Weighted Autoencoders
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
BDL
62
1,236
0
01 Sep 2015
Data Generation as Sequential Decision Making
Data Generation as Sequential Decision Making
Philip Bachman
Doina Precup
30
57
0
10 Jun 2015
Previous
123...171819