ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1505.05770
  4. Cited By
Variational Inference with Normalizing Flows

Variational Inference with Normalizing Flows

21 May 2015
Danilo Jimenez Rezende
S. Mohamed
    DRL
    BDL
ArXivPDFHTML

Papers citing "Variational Inference with Normalizing Flows"

50 / 900 papers shown
Title
Improved DDIM Sampling with Moment Matching Gaussian Mixtures
Improved DDIM Sampling with Moment Matching Gaussian Mixtures
Prasad Gabbur
DiffM
30
1
0
08 Nov 2023
Boosting Summarization with Normalizing Flows and Aggressive Training
Boosting Summarization with Normalizing Flows and Aggressive Training
Yu Yang
Xiaotong Shen
AI4CE
TPM
24
0
0
01 Nov 2023
Normalizing flow-based deep variational Bayesian network for seismic multi-hazards and impacts estimation from InSAR imagery
Xuechun Li
Paula M. Burgi
Wei Ma
Hae Young Noh
David J. Wald
Susu Xu
16
3
0
20 Oct 2023
Canonical normalizing flows for manifold learning
Canonical normalizing flows for manifold learning
Kyriakos Flouris
E. Konukoglu
DRL
67
7
0
19 Oct 2023
High Dimensional Causal Inference with Variational Backdoor Adjustment
High Dimensional Causal Inference with Variational Backdoor Adjustment
Daniel Israel
Aditya Grover
Mathias Niepert
CML
13
0
0
09 Oct 2023
Accelerating optimization over the space of probability measures
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
32
5
0
06 Oct 2023
Stochastic interpolants with data-dependent couplings
Stochastic interpolants with data-dependent couplings
M. S. Albergo
Mark Goldstein
Nicholas M. Boffi
Rajesh Ranganath
Eric Vanden-Eijnden
OT
37
30
0
05 Oct 2023
Learning Energy-Based Prior Model with Diffusion-Amortized MCMC
Learning Energy-Based Prior Model with Diffusion-Amortized MCMC
Peiyu Yu
Y. Zhu
Sirui Xie
Xiaojian Ma
Ruiqi Gao
Song-Chun Zhu
Ying Nian Wu
DiffM
39
12
0
05 Oct 2023
Diffusion Generative Flow Samplers: Improving learning signals through
  partial trajectory optimization
Diffusion Generative Flow Samplers: Improving learning signals through partial trajectory optimization
Dinghuai Zhang
Ricky Tian Qi Chen
Cheng-Hao Liu
Aaron C. Courville
Yoshua Bengio
39
41
0
04 Oct 2023
AI-Generated Images as Data Source: The Dawn of Synthetic Era
AI-Generated Images as Data Source: The Dawn of Synthetic Era
Zuhao Yang
Fangneng Zhan
Kunhao Liu
Muyu Xu
Shijian Lu
EGVM
31
18
0
03 Oct 2023
Light Schrödinger Bridge
Light Schrödinger Bridge
Alexander Korotin
Nikita Gushchin
Evgeny Burnaev
OT
41
4
0
02 Oct 2023
Reparameterized Variational Rejection Sampling
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
24
1
0
26 Sep 2023
Doubly Robust Proximal Causal Learning for Continuous Treatments
Doubly Robust Proximal Causal Learning for Continuous Treatments
Yong Wu
Yanwei Fu
Shouyan Wang
Xinwei Sun
26
1
0
22 Sep 2023
Deep Reinforcement Learning for Infinite Horizon Mean Field Problems in Continuous Spaces
Deep Reinforcement Learning for Infinite Horizon Mean Field Problems in Continuous Spaces
Andrea Angiuli
J. Fouque
Ruimeng Hu
Alan Raydan
37
5
0
19 Sep 2023
Diffusion Models with Deterministic Normalizing Flow Priors
Diffusion Models with Deterministic Normalizing Flow Priors
Mohsen Zand
Ali Etemad
Michael A. Greenspan
DiffM
34
2
0
03 Sep 2023
Computing excited states of molecules using normalizing flows
Computing excited states of molecules using normalizing flows
Yahya Saleh
Álvaro Fernández Corral
Emil Vogt
Armin Iske
J. Küpper
A. Yachmenev
38
7
0
31 Aug 2023
Reinforcement Learning for Generative AI: A Survey
Reinforcement Learning for Generative AI: A Survey
Yuanjiang Cao
Quan.Z Sheng
Julian McAuley
Lina Yao
SyDa
53
10
0
28 Aug 2023
AI-Generated Content (AIGC) for Various Data Modalities: A Survey
AI-Generated Content (AIGC) for Various Data Modalities: A Survey
Lin Geng Foo
Hossein Rahmani
Jun Liu
78
31
0
27 Aug 2023
Out-of-distribution detection using normalizing flows on the data manifold
Out-of-distribution detection using normalizing flows on the data manifold
S. Razavi
M. Mehmanchi
Reshad Hosseini
Mostafa Tavassolipour
OODD
53
0
0
26 Aug 2023
Faster Training of Neural ODEs Using Gauß-Legendre Quadrature
Faster Training of Neural ODEs Using Gauß-Legendre Quadrature
Alexander Norcliffe
M. Deisenroth
23
3
0
21 Aug 2023
Multi-GradSpeech: Towards Diffusion-based Multi-Speaker Text-to-speech
  Using Consistent Diffusion Models
Multi-GradSpeech: Towards Diffusion-based Multi-Speaker Text-to-speech Using Consistent Diffusion Models
Heyang Xue
Shuai Guo
Pengcheng Zhu
Mengxiao Bi
DiffM
40
1
0
21 Aug 2023
Discretization-Induced Dirichlet Posterior for Robust Uncertainty
  Quantification on Regression
Discretization-Induced Dirichlet Posterior for Robust Uncertainty Quantification on Regression
Xuanlong Yu
Gianni Franchi
Jindong Gu
Emanuel Aldea
UQCV
19
4
0
17 Aug 2023
Order-based Structure Learning with Normalizing Flows
Order-based Structure Learning with Normalizing Flows
Hamidreza Kamkari
Vahid Balazadeh Meresht
Vahid Zehtab
Rahul G. Krishnan
CML
35
1
0
14 Aug 2023
Audio is all in one: speech-driven gesture synthetics using WavLM pre-trained model
Fan Zhang
Naye Ji
Fuxing Gao
Siyuan Zhao
Zhaohan Wang
Shunman Li
32
0
0
11 Aug 2023
A Review of Change of Variable Formulas for Generative Modeling
A Review of Change of Variable Formulas for Generative Modeling
Ullrich Kothe
34
6
0
04 Aug 2023
Adversarial Training of Denoising Diffusion Model Using Dual
  Discriminators for High-Fidelity Multi-Speaker TTS
Adversarial Training of Denoising Diffusion Model Using Dual Discriminators for High-Fidelity Multi-Speaker TTS
Myeongji Ko
Yong-Hoon Choi
DiffM
25
1
0
03 Aug 2023
Image Synthesis under Limited Data: A Survey and Taxonomy
Image Synthesis under Limited Data: A Survey and Taxonomy
Mengping Yang
Zhe Wang
33
8
0
31 Jul 2023
Human Motion Generation: A Survey
Human Motion Generation: A Survey
Wentao Zhu
Xiaoxuan Ma
Dongwoo Ro
Hai Ci
Jinlu Zhang
Jiaxin Shi
Feng Gao
Qi Tian
Yizhou Wang
VGen
47
53
0
20 Jul 2023
Tapestry of Time and Actions: Modeling Human Activity Sequences using
  Temporal Point Process Flows
Tapestry of Time and Actions: Modeling Human Activity Sequences using Temporal Point Process Flows
Vinayak Gupta
Srikanta J. Bedathur
AI4TS
32
1
0
13 Jul 2023
PC-Droid: Faster diffusion and improved quality for particle cloud
  generation
PC-Droid: Faster diffusion and improved quality for particle cloud generation
Matthew Leigh
Debasish Sengupta
J. A. Raine
Guillaume Quétant
T. Golling
DiffM
46
14
0
13 Jul 2023
LINFA: a Python library for variational inference with normalizing flow
  and annealing
LINFA: a Python library for variational inference with normalizing flow and annealing
Yu Wang
Emma R. Cobian
Jubilee Lee
Fang Liu
J. Hauenstein
Daniele E. Schiavazzi
BDL
AI4CE
28
0
0
10 Jul 2023
DiffFlow: A Unified SDE Framework for Score-Based Diffusion Models and
  Generative Adversarial Networks
DiffFlow: A Unified SDE Framework for Score-Based Diffusion Models and Generative Adversarial Networks
Jingwei Zhang
Han Shi
Jincheng Yu
Enze Xie
Zhenguo Li
DiffM
26
3
0
05 Jul 2023
High Fidelity Image Counterfactuals with Probabilistic Causal Models
High Fidelity Image Counterfactuals with Probabilistic Causal Models
Fabio De Sousa Ribeiro
Tian Xia
M. Monteiro
Nick Pawlowski
Ben Glocker
DiffM
40
36
0
27 Jun 2023
DiMSam: Diffusion Models as Samplers for Task and Motion Planning under
  Partial Observability
DiMSam: Diffusion Models as Samplers for Task and Motion Planning under Partial Observability
Xiaolin Fang
Caelan Reed Garrett
Clemens Eppner
Tomás Lozano-Pérez
L. Kaelbling
Dieter Fox
DiffM
35
17
0
22 Jun 2023
HSR-Diff:Hyperspectral Image Super-Resolution via Conditional Diffusion
  Models
HSR-Diff:Hyperspectral Image Super-Resolution via Conditional Diffusion Models
Chanyue Wu
Dong Wang
Hanyu Mao
Ying Li
DiffM
23
38
0
21 Jun 2023
Diffusion with Forward Models: Solving Stochastic Inverse Problems
  Without Direct Supervision
Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision
A. Tewari
Tianwei Yin
George Cazenavette
Semon Rezchikov
J. Tenenbaum
F. Durand
William T. Freeman
Vincent Sitzmann
DiffM
54
88
0
20 Jun 2023
Probabilistic Learning of Multivariate Time Series with Temporal Irregularity
Probabilistic Learning of Multivariate Time Series with Temporal Irregularity
Yijun Li
Cheuk Hang Leung
Qi Wu
AI4TS
26
1
0
15 Jun 2023
A brief review of contrastive learning applied to astrophysics
A brief review of contrastive learning applied to astrophysics
M. Huertas-Company
R. Sarmiento
J. Knapen
32
9
0
08 Jun 2023
Towards Predicting Equilibrium Distributions for Molecular Systems with
  Deep Learning
Towards Predicting Equilibrium Distributions for Molecular Systems with Deep Learning
Shuxin Zheng
Jiyan He
Chang-Shu Liu
Yu Shi
Ziheng Lu
...
Peiran Jin
Chi Chen
Frank Noé
Haiguang Liu
Tie-Yan Liu
AI4CE
37
41
0
08 Jun 2023
MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY
  Estimation
MESSY Estimation: Maximum-Entropy based Stochastic and Symbolic densitY Estimation
Tony Tohme
Mohsen Sadr
K. Youcef-Toumi
N. Hadjiconstantinou
30
3
0
07 Jun 2023
Coupled Variational Autoencoder
Coupled Variational Autoencoder
Xiaoran Hao
Patrick Shafto
BDL
DRL
37
4
0
05 Jun 2023
Lifting Architectural Constraints of Injective Flows
Lifting Architectural Constraints of Injective Flows
Peter Sorrenson
Felix Dräxler
Armand Rousselot
Sander Hummerich
Leandro Zimmerman
Ullrich Kothe
TPM
AI4CE
36
8
0
02 Jun 2023
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
26
2
0
01 Jun 2023
Neuro-Causal Factor Analysis
Neuro-Causal Factor Analysis
Alex Markham
Ming Liu
Bryon Aragam
Liam Solus
CML
30
3
0
31 May 2023
GC-Flow: A Graph-Based Flow Network for Effective Clustering
GC-Flow: A Graph-Based Flow Network for Effective Clustering
Tianchun Wang
F. Mirzazadeh
Xinming Zhang
Jing Chen
BDL
48
7
0
26 May 2023
FineMorphs: Affine-diffeomorphic sequences for regression
FineMorphs: Affine-diffeomorphic sequences for regression
Michele Lohr
L. Younes
29
0
0
26 May 2023
Kernel Density Matrices for Probabilistic Deep Learning
Kernel Density Matrices for Probabilistic Deep Learning
Fabio A. González
Raúl Ramos-Pollán
Joseph A. Gallego-Mejia
16
2
0
26 May 2023
Error Bounds for Flow Matching Methods
Error Bounds for Flow Matching Methods
Joe Benton
George Deligiannidis
Arnaud Doucet
DiffM
35
32
0
26 May 2023
Automatic Tuning of Loss Trade-offs without Hyper-parameter Search in
  End-to-End Zero-Shot Speech Synthesis
Automatic Tuning of Loss Trade-offs without Hyper-parameter Search in End-to-End Zero-Shot Speech Synthesis
Seong-Hyun Park
Bohyung Kim
Tae-Hyun Oh
50
1
0
26 May 2023
Bi-fidelity Variational Auto-encoder for Uncertainty Quantification
Bi-fidelity Variational Auto-encoder for Uncertainty Quantification
Nuojin Cheng
Osman Asif Malik
Subhayan De
Stephen Becker
Alireza Doostan
29
9
0
25 May 2023
Previous
12345...161718
Next