ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02155
  4. Cited By
Optimal Rates for Random Fourier Features

Optimal Rates for Random Fourier Features

6 June 2015
Bharath K. Sriperumbudur
Z. Szabó
ArXivPDFHTML

Papers citing "Optimal Rates for Random Fourier Features"

36 / 36 papers shown
Title
Tensor Sketch: Fast and Scalable Polynomial Kernel Approximation
Tensor Sketch: Fast and Scalable Polynomial Kernel Approximation
Ninh Pham
Rasmus Pagh
42
0
0
13 May 2025
Optimal Kernel Quantile Learning with Random Features
Optimal Kernel Quantile Learning with Random Features
Caixing Wang
Xingdong Feng
62
0
0
24 Aug 2024
Nyström Kernel Stein Discrepancy
Nyström Kernel Stein Discrepancy
Florian Kalinke
Zoltan Szabo
Bharath K. Sriperumbudur
51
1
0
12 Jun 2024
Potential and limitations of random Fourier features for dequantizing quantum machine learning
Potential and limitations of random Fourier features for dequantizing quantum machine learning
R. Sweke
Erik Recio
Sofiene Jerbi
Elies Gil-Fuster
Bryce Fuller
Jens Eisert
Johannes Jakob Meyer
35
12
0
20 Sep 2023
The Representation Jensen-Shannon Divergence
The Representation Jensen-Shannon Divergence
J. Hoyos-Osorio
Santiago Posso-Murillo
L. S. Giraldo
40
6
0
25 May 2023
FAVOR#: Sharp Attention Kernel Approximations via New Classes of
  Positive Random Features
FAVOR#: Sharp Attention Kernel Approximations via New Classes of Positive Random Features
Valerii Likhosherstov
K. Choromanski
Kumar Avinava Dubey
Frederick Liu
Tamás Sarlós
Adrian Weller
30
3
0
01 Feb 2023
Compress Then Test: Powerful Kernel Testing in Near-linear Time
Compress Then Test: Powerful Kernel Testing in Near-linear Time
Carles Domingo-Enrich
Raaz Dwivedi
Lester W. Mackey
41
9
0
14 Jan 2023
Provably Reliable Large-Scale Sampling from Gaussian Processes
Provably Reliable Large-Scale Sampling from Gaussian Processes
Anthony Stephenson
Robert Allison
Edward O. Pyzer-Knapp
24
2
0
15 Nov 2022
On The Relative Error of Random Fourier Features for Preserving Kernel
  Distance
On The Relative Error of Random Fourier Features for Preserving Kernel Distance
Kuan Cheng
S. Jiang
Luojian Wei
Zhide Wei
52
1
0
01 Oct 2022
Fast Kernel Methods for Generic Lipschitz Losses via $p$-Sparsified
  Sketches
Fast Kernel Methods for Generic Lipschitz Losses via ppp-Sparsified Sketches
T. Ahmad
Pierre Laforgue
Florence dÁlché-Buc
19
5
0
08 Jun 2022
Chefs' Random Tables: Non-Trigonometric Random Features
Chefs' Random Tables: Non-Trigonometric Random Features
Valerii Likhosherstov
K. Choromanski
Kumar Avinava Dubey
Frederick Liu
Tamás Sarlós
Adrian Weller
38
17
0
30 May 2022
Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
Maximum Mean Discrepancy on Exponential Windows for Online Change Detection
Florian Kalinke
Marco Heyden
Edouard Fouché
Klemens Bohm
Klemens Böhm
29
0
0
25 May 2022
SRMD: Sparse Random Mode Decomposition
SRMD: Sparse Random Mode Decomposition
Nicholas Richardson
Hayden Schaeffer
Giang Tran
27
11
0
12 Apr 2022
A Generalized Weighted Optimization Method for Computational Learning
  and Inversion
A Generalized Weighted Optimization Method for Computational Learning and Inversion
Bjorn Engquist
Kui Ren
Yunan Yang
31
4
0
23 Jan 2022
Global convergence of ResNets: From finite to infinite width using
  linear parameterization
Global convergence of ResNets: From finite to infinite width using linear parameterization
Raphael Barboni
Gabriel Peyré
Franccois-Xavier Vialard
16
12
0
10 Dec 2021
Bridging the reality gap in quantum devices with physics-aware machine
  learning
Bridging the reality gap in quantum devices with physics-aware machine learning
D. L. Craig
H. Moon
F. Fedele
D. Lennon
B. V. Straaten
...
D. Zumbuhl
G. Briggs
Michael A. Osborne
D. Sejdinovic
N. Ares
28
13
0
22 Nov 2021
Preconditioning for Scalable Gaussian Process Hyperparameter
  Optimization
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
22
24
0
01 Jul 2021
Generalization Bounds for Sparse Random Feature Expansions
Generalization Bounds for Sparse Random Feature Expansions
Abolfazl Hashemi
Hayden Schaeffer
Robert Shi
Ufuk Topcu
Giang Tran
Rachel A. Ward
MLT
42
41
0
04 Mar 2021
A Survey on Large-scale Machine Learning
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
25
110
0
10 Aug 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Implicit Regularization of Random Feature Models
Implicit Regularization of Random Feature Models
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
31
82
0
19 Feb 2020
COKE: Communication-Censored Decentralized Kernel Learning
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu
Yue Wang
Xiang Chen
Z. Tian
15
20
0
28 Jan 2020
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Large-scale Kernel Methods and Applications to Lifelong Robot Learning
Raffaello Camoriano
42
1
0
11 Dec 2019
Gaussian Processes with Errors in Variables: Theory and Computation
Gaussian Processes with Errors in Variables: Theory and Computation
Shuang Zhou
D. Pati
Tianying Wang
Yun Yang
R. Carroll
27
3
0
14 Oct 2019
Simple and Almost Assumption-Free Out-of-Sample Bound for Random Feature
  Mapping
Simple and Almost Assumption-Free Out-of-Sample Bound for Random Feature Mapping
Shusen Wang
23
2
0
24 Sep 2019
Sampled Softmax with Random Fourier Features
Sampled Softmax with Random Fourier Features
A. S. Rawat
Jiecao Chen
Felix X. Yu
A. Suresh
Sanjiv Kumar
39
55
0
24 Jul 2019
On Kernel Derivative Approximation with Random Fourier Features
On Kernel Derivative Approximation with Random Fourier Features
Z. Szabó
Bharath K. Sriperumbudur
32
12
0
11 Oct 2018
Random Feature Stein Discrepancies
Random Feature Stein Discrepancies
Jonathan H. Huggins
Lester W. Mackey
35
45
0
20 Jun 2018
Domain Generalization by Marginal Transfer Learning
Domain Generalization by Marginal Transfer Learning
Gilles Blanchard
A. Deshmukh
Ürün Dogan
Gyemin Lee
Clayton Scott
OOD
41
277
0
21 Nov 2017
Differentially Private Database Release via Kernel Mean Embeddings
Differentially Private Database Release via Kernel Mean Embeddings
Matej Balog
Ilya O. Tolstikhin
Bernhard Schölkopf
SyDa
45
38
0
04 Oct 2017
Gaussian Quadrature for Kernel Features
Gaussian Quadrature for Kernel Features
Tri Dao
Christopher De Sa
Christopher Ré
36
49
0
08 Sep 2017
Orthogonal Random Features
Orthogonal Random Features
Felix X. Yu
A. Suresh
K. Choromanski
D. Holtmann-Rice
Sanjiv Kumar
35
218
0
28 Oct 2016
Operator-Valued Bochner Theorem, Fourier Feature Maps for
  Operator-Valued Kernels, and Vector-Valued Learning
Operator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning
H. Q. Minh
39
18
0
19 Aug 2016
Generalization Properties of Learning with Random Features
Generalization Properties of Learning with Random Features
Alessandro Rudi
Lorenzo Rosasco
MLT
32
328
0
14 Feb 2016
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential
  Families
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
Heiko Strathmann
Dino Sejdinovic
Samuel Livingstone
Z. Szabó
Arthur Gretton
BDL
24
76
0
08 Jun 2015
Nonparametric sparsity and regularization
Nonparametric sparsity and regularization
Lorenzo Rosasco
S. Villa
S. Mosci
M. Santoro
A. Verri
93
102
0
13 Aug 2012
1