ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.02267
  4. Cited By
Computationally Efficient Bayesian Learning of Gaussian Process State
  Space Models

Computationally Efficient Bayesian Learning of Gaussian Process State Space Models

7 June 2015
Andreas Svensson
Arno Solin
Simo Särkkä
Thomas B. Schon
ArXivPDFHTML

Papers citing "Computationally Efficient Bayesian Learning of Gaussian Process State Space Models"

26 / 26 papers shown
Title
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
54
0
0
24 Mar 2025
Adaptive Basis Function Selection for Computationally Efficient
  Predictions
Adaptive Basis Function Selection for Computationally Efficient Predictions
Anton Kullberg
Frida Marie Viset
Isaac Skog
Gustaf Hendeby
28
0
0
14 Aug 2024
Exploiting Hankel-Toeplitz Structures for Fast Computation of Kernel
  Precision Matrices
Exploiting Hankel-Toeplitz Structures for Fast Computation of Kernel Precision Matrices
Frida Viset
Anton Kullberg
Frederiek Wesel
Arno Solin
35
0
0
05 Aug 2024
Training Bayesian Neural Networks with Sparse Subspace Variational
  Inference
Training Bayesian Neural Networks with Sparse Subspace Variational Inference
Junbo Li
Zichen Miao
Qiang Qiu
Ruqi Zhang
BDL
UQCV
22
8
0
16 Feb 2024
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field
  and Online Inference
Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference
Zhidi Lin
Yiyong Sun
Feng Yin
Alexandre Thiéry
32
4
0
10 Dec 2023
Out of Distribution Detection via Domain-Informed Gaussian Process State
  Space Models
Out of Distribution Detection via Domain-Informed Gaussian Process State Space Models
Alonso Marco
Elias Morley
Claire Tomlin
36
2
0
13 Sep 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Free-Form Variational Inference for Gaussian Process State-Space Models
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
16
9
0
20 Feb 2023
Sequential Estimation of Gaussian Process-based Deep State-Space Models
Sequential Estimation of Gaussian Process-based Deep State-Space Models
Yuhao Liu
Marzieh Ajirak
P. Djuric
26
12
0
29 Jan 2023
Learning Nonparametric Volterra Kernels with Gaussian Processes
Learning Nonparametric Volterra Kernels with Gaussian Processes
M. Ross
M. Smith
Mauricio A. Alvarez
GP
19
7
0
10 Jun 2021
Probabilistic Robust Linear Quadratic Regulators with Gaussian Processes
Probabilistic Robust Linear Quadratic Regulators with Gaussian Processes
Alexander von Rohr
Matthias Neumann-Brosig
Sebastian Trimpe
24
8
0
17 May 2021
State-space aerodynamic model reveals high force control authority and
  predictability in flapping flight
State-space aerodynamic model reveals high force control authority and predictability in flapping flight
Y. Bayiz
Bo Cheng
8
11
0
14 Mar 2021
Structure-preserving Gaussian Process Dynamics
Structure-preserving Gaussian Process Dynamics
K. Ensinger
Friedrich Solowjow
Sebastian Ziesche
Michael Tiemann
Sebastian Trimpe
40
9
0
02 Feb 2021
The Use of Gaussian Processes in System Identification
The Use of Gaussian Processes in System Identification
Simo Särkkä
GP
AI4TS
16
8
0
13 Jul 2019
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Neural Dynamics Discovery via Gaussian Process Recurrent Neural Networks
Qi She
Anqi Wu
BDL
23
34
0
01 Jul 2019
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
16
681
0
03 Jul 2018
A Data-Driven Approach to Dynamically Adjust Resource Allocation for
  Compute Clusters
A Data-Driven Approach to Dynamically Adjust Resource Allocation for Compute Clusters
Francesco Pace
Dimitrios Milios
D. Carra
D. Venzano
Pietro Michiardi
8
4
0
01 Jul 2018
Learning dynamical systems with particle stochastic approximation EM
Learning dynamical systems with particle stochastic approximation EM
Andreas Svensson
Fredrik Lindsten
39
9
0
25 Jun 2018
Fast Kernel Approximations for Latent Force Models and Convolved
  Multiple-Output Gaussian processes
Fast Kernel Approximations for Latent Force Models and Convolved Multiple-Output Gaussian processes
Cristian Guarnizo Lemus
Mauricio A. Alvarez
15
15
0
18 May 2018
Learning unknown ODE models with Gaussian processes
Learning unknown ODE models with Gaussian processes
Markus Heinonen
Çağatay Yıldız
Henrik Mannerstrom
Jukka Intosalmi
Harri Lähdesmäki
26
93
0
12 Mar 2018
Deep Recurrent Gaussian Process with Variational Sparse Spectrum
  Approximation
Deep Recurrent Gaussian Process with Variational Sparse Spectrum Approximation
Roman Föll
B. Haasdonk
Markus Hanselmann
Holger Ulmer
BDL
20
6
0
02 Nov 2017
Identification of Gaussian Process State Space Models
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
29
111
0
30 May 2017
Spectral learning of dynamic systems from nonequilibrium data
Spectral learning of dynamic systems from nonequilibrium data
Hao Wu
Frank Noé
23
4
0
04 Sep 2016
A flexible state space model for learning nonlinear dynamical systems
A flexible state space model for learning nonlinear dynamical systems
Andreas Svensson
Thomas B. Schon
27
104
0
17 Mar 2016
System Identification through Online Sparse Gaussian Process Regression
  with Input Noise
System Identification through Online Sparse Gaussian Process Regression with Input Noise
Hildo Bijl
Thomas B. Schon
J. Wingerden
M. Verhaegen
39
41
0
29 Jan 2016
Recurrent Gaussian Processes
Recurrent Gaussian Processes
C. L. C. Mattos
Zhenwen Dai
Andreas C. Damianou
Jeremy Forth
G. Barreto
Neil D. Lawrence
BDL
32
75
0
20 Nov 2015
Nonlinear State Space Model Identification Using a Regularized Basis
  Function Expansion
Nonlinear State Space Model Identification Using a Regularized Basis Function Expansion
Andreas Svensson
Thomas B. Schon
Arno Solin
Simo Särkkä
28
65
0
02 Oct 2015
1