ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.04132
  4. Cited By
Stochastic Expectation Propagation

Stochastic Expectation Propagation

12 June 2015
Yingzhen Li
Jose Miguel Hernandez-Lobato
Richard Turner
ArXivPDFHTML

Papers citing "Stochastic Expectation Propagation"

23 / 23 papers shown
Title
Improving Uncertainty Quantification of Variance Networks by
  Tree-Structured Learning
Improving Uncertainty Quantification of Variance Networks by Tree-Structured Learning
Wenxuan Ma
Xing Yan
Kun Zhang
UQCV
28
0
0
24 Dec 2022
GFlowNets and variational inference
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
136
78
0
02 Oct 2022
Partitioned Variational Inference: A Framework for Probabilistic
  Federated Learning
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard Turner
FedML
19
12
0
24 Feb 2022
Approximate Inference via Clustering
Approximate Inference via Clustering
Qianqian Song
33
0
0
28 Nov 2021
Differentially private stochastic expectation propagation (DP-SEP)
Differentially private stochastic expectation propagation (DP-SEP)
Margarita Vinaroz
Mijung Park
25
1
0
25 Nov 2021
Dual Parameterization of Sparse Variational Gaussian Processes
Dual Parameterization of Sparse Variational Gaussian Processes
Vincent Adam
Paul E. Chang
Mohammad Emtiyaz Khan
Arno Solin
24
20
0
05 Nov 2021
Bayes-Newton Methods for Approximate Bayesian Inference with PSD
  Guarantees
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
21
15
0
02 Nov 2021
Post-hoc loss-calibration for Bayesian neural networks
Post-hoc loss-calibration for Bayesian neural networks
Meet P. Vadera
S. Ghosh
Kenney Ng
Benjamin M. Marlin
UQCV
BDL
43
7
0
13 Jun 2021
Infinite-dimensional gradient-based descent for alpha-divergence
  minimisation
Infinite-dimensional gradient-based descent for alpha-divergence minimisation
Kamélia Daudel
Randal Douc
Franccois Portier
21
17
0
20 May 2020
The fff-Divergence Expectation Iteration Scheme
Kamélia Daudel
Randal Douc
Franccois Portier
François Roueff
22
1
0
26 Sep 2019
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Adversarial Learning of a Sampler Based on an Unnormalized Distribution
Chunyuan Li
Ke Bai
Jianqiao Li
Guoyin Wang
Changyou Chen
Lawrence Carin
14
10
0
03 Jan 2019
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
27
55
0
27 Nov 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
12
46
0
05 Sep 2018
Variational Implicit Processes
Variational Implicit Processes
Chao Ma
Yingzhen Li
José Miguel Hernández-Lobato
BDL
24
68
0
06 Jun 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Expectation Propagation for t-Exponential Family Using Q-Algebra
Expectation Propagation for t-Exponential Family Using Q-Algebra
Futoshi Futami
Issei Sato
Masashi Sugiyama
18
6
0
25 May 2017
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
Yingzhen Li
Y. Gal
UQCV
BDL
49
196
0
08 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,683
0
05 Dec 2016
Variational Inference via $χ$-Upper Bound Minimization
Variational Inference via χχχ-Upper Bound Minimization
Adji Bousso Dieng
Dustin Tran
Rajesh Ranganath
John Paisley
David M. Blei
BDL
83
36
0
01 Nov 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
19
1,073
0
16 Aug 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations
  using Power Expectation Propagation
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
24
25
0
23 May 2016
Black-box $α$-divergence Minimization
Black-box ααα-divergence Minimization
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
T. Bui
Richard Turner
23
137
0
10 Nov 2015
Bayesian inference for spatio-temporal spike-and-slab priors
Bayesian inference for spatio-temporal spike-and-slab priors
Michael Riis Andersen
Aki Vehtari
Ole Winther
Lars Kai Hansen
26
33
0
15 Sep 2015
1