ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.05843
  4. Cited By
Dependent Multinomial Models Made Easy: Stick Breaking with the
  Pólya-Gamma Augmentation

Dependent Multinomial Models Made Easy: Stick Breaking with the Pólya-Gamma Augmentation

18 June 2015
Scott W. Linderman
Matthew J. Johnson
Ryan P. Adams
ArXiv (abs)PDFHTML

Papers citing "Dependent Multinomial Models Made Easy: Stick Breaking with the Pólya-Gamma Augmentation"

23 / 23 papers shown
Title
AXIOM: Learning to Play Games in Minutes with Expanding Object-Centric Models
AXIOM: Learning to Play Games in Minutes with Expanding Object-Centric Models
Conor Heins
Toon Van de Maele
Alexander Tschantz
Hampus Linander
Dimitrije Marković
...
Magnus T. Koudahl
Marco Perin
Karl J. Friston
Tim Verbelen
Christopher L. Buckley
OCL
40
0
0
30 May 2025
Scalable Inference for Bayesian Multinomial Logistic-Normal Dynamic Linear Models
Scalable Inference for Bayesian Multinomial Logistic-Normal Dynamic Linear Models
Manan Saxena
Tinghua Chen
Justin D. Silverman
24
0
0
07 Oct 2024
Gradient-free variational learning with conditional mixture networks
Gradient-free variational learning with conditional mixture networks
Conor Heins
Hao Wu
Dimitrije Marković
Alexander Tschantz
Jeff Beck
Christopher L. Buckley
BDL
88
3
0
29 Aug 2024
Video-based Surgical Skill Assessment using Tree-based Gaussian Process
  Classifier
Video-based Surgical Skill Assessment using Tree-based Gaussian Process Classifier
Arefeh Rezaei
M. J. Ahmadi
Amir Molaei
H. Taghirad
55
1
0
15 Dec 2023
HiGen: Hierarchical Graph Generative Networks
HiGen: Hierarchical Graph Generative Networks
Mahdi Karami
68
4
0
30 May 2023
On Hierarchical Multi-Resolution Graph Generative Models
On Hierarchical Multi-Resolution Graph Generative Models
Mahdi Karami
Jun Luo
AI4CE
67
0
0
06 Mar 2023
Guided Deep Kernel Learning
Guided Deep Kernel Learning
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
66
7
0
19 Feb 2023
Easy Variational Inference for Categorical Models via an Independent
  Binary Approximation
Easy Variational Inference for Categorical Models via an Independent Binary Approximation
M. Wojnowicz
Shuchin Aeron
Eric L. Miller
M. C. Hughes
53
2
0
31 May 2022
Personalized Federated Learning with Gaussian Processes
Personalized Federated Learning with Gaussian Processes
Idan Achituve
Aviv Shamsian
Aviv Navon
Gal Chechik
Ethan Fetaya
FedML
87
103
0
29 Jun 2021
Scalable Cross Validation Losses for Gaussian Process Models
Scalable Cross Validation Losses for Gaussian Process Models
M. Jankowiak
Geoff Pleiss
65
6
0
24 May 2021
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma
  Augmented Gaussian Processes
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
109
63
0
20 Jul 2020
Latent variable modeling with random features
Latent variable modeling with random features
Gregory W. Gundersen
M. Zhang
Barbara E. Engelhardt
BDLDRL
44
11
0
19 Jun 2020
Correlation Priors for Reinforcement Learning
Correlation Priors for Reinforcement Learning
Bastian Alt
Adrian Šošić
Heinz Koeppl
OffRL
63
12
0
11 Sep 2019
Multi-Class Gaussian Process Classification Made Conjugate: Efficient
  Inference via Data Augmentation
Multi-Class Gaussian Process Classification Made Conjugate: Efficient Inference via Data Augmentation
Théo Galy-Fajou
F. Wenzel
Christian Donner
Manfred Opper
60
30
0
23 May 2019
Tree-Structured Recurrent Switching Linear Dynamical Systems for
  Multi-Scale Modeling
Tree-Structured Recurrent Switching Linear Dynamical Systems for Multi-Scale Modeling
Josue Nassar
Scott W. Linderman
M. Bugallo
Il-Su Park
AI4CE
136
74
0
29 Nov 2018
Learning Invariances using the Marginal Likelihood
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
92
86
0
16 Aug 2018
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Christian Donner
Manfred Opper
92
36
0
02 Aug 2018
PG-TS: Improved Thompson Sampling for Logistic Contextual Bandits
PG-TS: Improved Thompson Sampling for Logistic Contextual Bandits
Bianca Dumitrascu
Karen Feng
Barbara E. Engelhardt
57
41
0
18 May 2018
Efficient Gaussian Process Classification Using Polya-Gamma Data
  Augmentation
Efficient Gaussian Process Classification Using Polya-Gamma Data Augmentation
F. Wenzel
Théo Galy-Fajou
Christian Donner
Marius Kloft
Manfred Opper
97
36
0
18 Feb 2018
Reparameterizing the Birkhoff Polytope for Variational Permutation
  Inference
Reparameterizing the Birkhoff Polytope for Variational Permutation Inference
Scott W. Linderman
Gonzalo E. Mena
H. Cooper
Liam Paninski
John P. Cunningham
77
51
0
26 Oct 2017
Tractable Bayesian Density Regression via Logit Stick-Breaking Priors
Tractable Bayesian Density Regression via Logit Stick-Breaking Priors
T. Rigon
Daniele Durante
60
27
0
11 Jan 2017
Recurrent switching linear dynamical systems
Recurrent switching linear dynamical systems
Scott W. Linderman
Andrew C. Miller
Ryan P. Adams
David M. Blei
Liam Paninski
Matthew J. Johnson
113
74
0
26 Oct 2016
Gamma Belief Networks
Gamma Belief Networks
Mingyuan Zhou
Yulai Cong
Bo Chen
BDL
106
87
0
09 Dec 2015
1