ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.06840
  4. Cited By
On Variance Reduction in Stochastic Gradient Descent and its
  Asynchronous Variants
v1v2 (latest)

On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants

23 June 2015
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
ArXiv (abs)PDFHTML

Papers citing "On Variance Reduction in Stochastic Gradient Descent and its Asynchronous Variants"

50 / 101 papers shown
k-SVRG: Variance Reduction for Large Scale Optimization
k-SVRG: Variance Reduction for Large Scale Optimization
Anant Raj
Sebastian U. Stich
208
6
0
02 May 2018
Proximal SCOPE for Distributed Sparse Learning: Better Data Partition
  Implies Faster Convergence Rate
Proximal SCOPE for Distributed Sparse Learning: Better Data Partition Implies Faster Convergence RateNeural Information Processing Systems (NeurIPS), 2018
Shen-Yi Zhao
Gong-Duo Zhang
Ming-Wei Li
Wu-Jun Li
165
8
0
15 Mar 2018
High Throughput Synchronous Distributed Stochastic Gradient Descent
High Throughput Synchronous Distributed Stochastic Gradient Descent
Michael Teng
Frank Wood
112
2
0
12 Mar 2018
Accelerating Asynchronous Algorithms for Convex Optimization by Momentum
  Compensation
Accelerating Asynchronous Algorithms for Convex Optimization by Momentum Compensation
Cong Fang
Yameng Huang
Zhouchen Lin
ODL
90
12
0
27 Feb 2018
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine
  Learning
VR-SGD: A Simple Stochastic Variance Reduction Method for Machine LearningIEEE Transactions on Knowledge and Data Engineering (TKDE), 2018
Fanhua Shang
Kaiwen Zhou
Hongying Liu
James Cheng
Ivor W. Tsang
Lijun Zhang
Dacheng Tao
L. Jiao
217
72
0
26 Feb 2018
Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient
  Optimization
Guaranteed Sufficient Decrease for Stochastic Variance Reduced Gradient OptimizationInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2018
Fanhua Shang
Yuanyuan Liu
Kaiwen Zhou
James Cheng
K. K. Ng
Yuichi Yoshida
239
9
0
26 Feb 2018
Feature-Distributed SVRG for High-Dimensional Linear Classification
Feature-Distributed SVRG for High-Dimensional Linear Classification
Gong-Duo Zhang
Shen-Yi Zhao
Hao Gao
Wu-Jun Li
122
18
0
10 Feb 2018
Improved Oracle Complexity of Variance Reduced Methods for Nonsmooth Convex Stochastic Composition Optimization
Tianyi Lin
Chenyou Fan
Mengdi Wang
324
0
0
07 Feb 2018
Improved asynchronous parallel optimization analysis for stochastic
  incremental methods
Improved asynchronous parallel optimization analysis for stochastic incremental methods
Rémi Leblond
Fabian Pedregosa
Damien Scieur
358
76
0
11 Jan 2018
Gradient Sparsification for Communication-Efficient Distributed
  Optimization
Gradient Sparsification for Communication-Efficient Distributed OptimizationNeural Information Processing Systems (NeurIPS), 2017
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
284
574
0
26 Oct 2017
DSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for
  Asynchronous Distributed Optimization
DSCOVR: Randomized Primal-Dual Block Coordinate Algorithms for Asynchronous Distributed Optimization
Lin Xiao
Adams Wei Yu
Qihang Lin
Weizhu Chen
224
60
0
13 Oct 2017
GIANT: Globally Improved Approximate Newton Method for Distributed
  Optimization
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
400
139
0
11 Sep 2017
A Generic Approach for Escaping Saddle points
A Generic Approach for Escaping Saddle points
Sashank J. Reddi
Manzil Zaheer
S. Sra
Barnabás Póczós
Francis R. Bach
Ruslan Salakhutdinov
Alex Smola
236
83
0
05 Sep 2017
A Convergence Analysis for A Class of Practical Variance-Reduction
  Stochastic Gradient MCMC
A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
195
28
0
04 Sep 2017
Variance-Reduced Stochastic Learning under Random Reshuffling
Variance-Reduced Stochastic Learning under Random Reshuffling
Bicheng Ying
Kun Yuan
Ali H. Sayed
202
13
0
04 Aug 2017
A Robust Multi-Batch L-BFGS Method for Machine Learning
A Robust Multi-Batch L-BFGS Method for Machine Learning
A. Berahas
Martin Takáč
AAMLODL
238
47
0
26 Jul 2017
Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite
  Optimization
Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization
Fabian Pedregosa
Rémi Leblond
Damien Scieur
279
34
0
20 Jul 2017
Stochastic, Distributed and Federated Optimization for Machine Learning
Stochastic, Distributed and Federated Optimization for Machine Learning
Jakub Konecný
FedML
179
38
0
04 Jul 2017
IS-ASGD: Accelerating Asynchronous SGD using Importance Sampling
IS-ASGD: Accelerating Asynchronous SGD using Importance Sampling
Fei Wang
Jun Ye
Weichen Li
Guihai Chen
276
1
0
26 Jun 2017
Larger is Better: The Effect of Learning Rates Enjoyed by Stochastic
  Optimization with Progressive Variance Reduction
Larger is Better: The Effect of Learning Rates Enjoyed by Stochastic Optimization with Progressive Variance Reduction
Fanhua Shang
133
1
0
17 Apr 2017
Guaranteed Sufficient Decrease for Variance Reduced Stochastic Gradient
  Descent
Guaranteed Sufficient Decrease for Variance Reduced Stochastic Gradient Descent
Fanhua Shang
Yuanyuan Liu
James Cheng
K. K. Ng
Yuichi Yoshida
196
3
0
20 Mar 2017
Lock-Free Optimization for Non-Convex Problems
Lock-Free Optimization for Non-Convex Problems
Shen-Yi Zhao
Gong-Duo Zhang
Wu-Jun Li
136
6
0
11 Dec 2016
Zeroth-order Asynchronous Doubly Stochastic Algorithm with Variance
  Reduction
Zeroth-order Asynchronous Doubly Stochastic Algorithm with Variance Reduction
Bin Gu
Zhouyuan Huo
Heng-Chiao Huang
133
17
0
05 Dec 2016
Accelerated Variance Reduced Block Coordinate Descent
Accelerated Variance Reduced Block Coordinate Descent
Zebang Shen
Hui Qian
Chao Zhang
Tengfei Zhou
98
1
0
13 Nov 2016
Asynchronous Stochastic Block Coordinate Descent with Variance Reduction
Asynchronous Stochastic Block Coordinate Descent with Variance Reduction
Bin Gu
Zhouyuan Huo
Heng-Chiao Huang
233
10
0
29 Oct 2016
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Big Batch SGD: Automated Inference using Adaptive Batch Sizes
Soham De
A. Yadav
David Jacobs
Tom Goldstein
ODL
477
63
0
18 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
457
2,126
0
08 Oct 2016
Asynchronous Stochastic Proximal Optimization Algorithms with Variance
  Reduction
Asynchronous Stochastic Proximal Optimization Algorithms with Variance Reduction
Qi Meng
Wei-neng Chen
Jingcheng Yu
Taifeng Wang
Zhiming Ma
Tie-Yan Liu
100
25
0
27 Sep 2016
Decoupled Asynchronous Proximal Stochastic Gradient Descent with
  Variance Reduction
Decoupled Asynchronous Proximal Stochastic Gradient Descent with Variance Reduction
Zhouyuan Huo
Bin Gu
Heng-Chiao Huang
133
4
0
22 Sep 2016
Less than a Single Pass: Stochastically Controlled Stochastic Gradient
  Method
Less than a Single Pass: Stochastically Controlled Stochastic Gradient Method
Lihua Lei
Sai Li
257
100
0
12 Sep 2016
AIDE: Fast and Communication Efficient Distributed Optimization
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
202
153
0
24 Aug 2016
ASAGA: Asynchronous Parallel SAGA
ASAGA: Asynchronous Parallel SAGA
Rémi Leblond
Fabian Pedregosa
Damien Scieur
AI4TS
260
106
0
15 Jun 2016
Post-Inference Prior Swapping
Post-Inference Prior Swapping
Willie Neiswanger
Eric Xing
185
1
0
02 Jun 2016
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful
  Enterprise Gamification
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful Enterprise Gamification
Xinghao Pan
201
63
0
29 May 2016
Stochastic Variance Reduced Riemannian Eigensolver
Stochastic Variance Reduced Riemannian Eigensolver
Zhiqiang Xu
Yiping Ke
84
6
0
26 May 2016
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Fast Stochastic Methods for Nonsmooth Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
198
54
0
23 May 2016
Nonconvex Sparse Learning via Stochastic Optimization with Progressive
  Variance Reduction
Nonconvex Sparse Learning via Stochastic Optimization with Progressive Variance Reduction
Xingguo Li
R. Arora
Han Liu
Jarvis Haupt
T. Zhao
295
71
0
09 May 2016
Asynchronous Stochastic Gradient Descent with Variance Reduction for
  Non-Convex Optimization
Asynchronous Stochastic Gradient Descent with Variance Reduction for Non-Convex Optimization
Zhouyuan Huo
Heng-Chiao Huang
227
49
0
12 Apr 2016
Optimal Margin Distribution Machine
Optimal Margin Distribution Machine
Teng Zhang
Zhi Zhou
169
76
0
12 Apr 2016
Revisiting Distributed Synchronous SGD
Revisiting Distributed Synchronous SGD
Jianmin Chen
Xinghao Pan
R. Monga
Samy Bengio
Rafal Jozefowicz
329
835
0
04 Apr 2016
Trading-off variance and complexity in stochastic gradient descent
Trading-off variance and complexity in stochastic gradient descent
Vatsal Shah
Megasthenis Asteris
Anastasios Kyrillidis
Sujay Sanghavi
184
13
0
22 Mar 2016
Stochastic Variance Reduction for Nonconvex Optimization
Stochastic Variance Reduction for Nonconvex Optimization
Sashank J. Reddi
Ahmed S. Hefny
S. Sra
Barnabás Póczós
Alex Smola
393
632
0
19 Mar 2016
Fast Incremental Method for Nonconvex Optimization
Fast Incremental Method for Nonconvex Optimization
Sashank J. Reddi
S. Sra
Barnabás Póczós
Alex Smola
187
45
0
19 Mar 2016
Accelerating Deep Neural Network Training with Inconsistent Stochastic
  Gradient Descent
Accelerating Deep Neural Network Training with Inconsistent Stochastic Gradient Descent
Linnan Wang
Yi Yang
Martin Renqiang Min
S. Chakradhar
250
94
0
17 Mar 2016
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters
Zeyuan Allen-Zhu
Yang Yuan
Karthik Sridharan
217
29
0
05 Feb 2016
SCOPE: Scalable Composite Optimization for Learning on Spark
SCOPE: Scalable Composite Optimization for Learning on Spark
Shen-Yi Zhao
Ru Xiang
Yinghuan Shi
Peng Gao
Wu-Jun Li
441
16
0
30 Jan 2016
Efficient Distributed SGD with Variance Reduction
Efficient Distributed SGD with Variance Reduction
Soham De
Tom Goldstein
246
43
0
09 Dec 2015
Variance Reduction for Distributed Stochastic Gradient Descent
Variance Reduction for Distributed Stochastic Gradient Descent
Soham De
Gavin Taylor
Tom Goldstein
179
8
0
05 Dec 2015
Perturbed Iterate Analysis for Asynchronous Stochastic Optimization
Perturbed Iterate Analysis for Asynchronous Stochastic OptimizationSIAM Journal on Optimization (SIAM J. Optim.), 2015
Horia Mania
Xinghao Pan
Dimitris Papailiopoulos
Benjamin Recht
Kannan Ramchandran
Sai Li
263
244
0
24 Jul 2015
An Asynchronous Mini-Batch Algorithm for Regularized Stochastic
  Optimization
An Asynchronous Mini-Batch Algorithm for Regularized Stochastic Optimization
Hamid Reza Feyzmahdavian
Arda Aytekin
M. Johansson
217
123
0
18 May 2015
Previous
123
Next
Page 2 of 3