ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.07944
  4. Cited By
Principal Geodesic Analysis for Probability Measures under the Optimal
  Transport Metric
v1v2 (latest)

Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric

Neural Information Processing Systems (NeurIPS), 2025
26 June 2015
Vivien Seguy
Marco Cuturi
    OT
ArXiv (abs)PDFHTML

Papers citing "Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric"

35 / 35 papers shown
Title
On the Wasserstein Geodesic Principal Component Analysis of probability measures
Nina Vesseron
Elsa Cazelles
Alice Le Brigant
Thierry Klein
44
0
0
04 Jun 2025
Manifold learning in metric spaces
Manifold learning in metric spacesApplied and Computational Harmonic Analysis (ACHA), 2025
Liane Xu
Amit Singer
147
0
0
20 Mar 2025
Non-injectivity of Bures--Wasserstein barycentres in infinite dimensions
Non-injectivity of Bures--Wasserstein barycentres in infinite dimensions
Y. Zemel
85
1
0
15 Nov 2023
Group-blind optimal transport to group parity and its constrained
  variants
Group-blind optimal transport to group parity and its constrained variants
Quan-Gen Zhou
Georgios Korpas
121
3
0
17 Oct 2023
RDA-INR: Riemannian Diffeomorphic Autoencoding via Implicit Neural
  Representations
RDA-INR: Riemannian Diffeomorphic Autoencoding via Implicit Neural RepresentationsSIAM Journal of Imaging Sciences (SIIMS), 2025
Sven Dummer
N. Strisciuglio
Christoph Brune
MedIm
128
6
0
22 May 2023
Geometric Sparse Coding in Wasserstein Space
Geometric Sparse Coding in Wasserstein Space
M. Mueller
Shuchin Aeron
James M. Murphy
Abiy Tasissa
88
4
0
21 Oct 2022
Curriculum Reinforcement Learning using Optimal Transport via Gradual
  Domain Adaptation
Curriculum Reinforcement Learning using Optimal Transport via Gradual Domain Adaptation
Peide Huang
Mengdi Xu
Jiacheng Zhu
Laixi Shi
Fei Fang
Ding Zhao
CLL
156
30
0
18 Oct 2022
Wasserstein $K$-means for clustering probability distributions
Wasserstein KKK-means for clustering probability distributions
Yubo Zhuang
Xiaohui Chen
Yun Yang
142
28
0
14 Sep 2022
Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams)
Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams)
Mathieu Pont
Jules Vidal
Julien Tierny
155
10
0
22 Jul 2022
A stochastic Gauss-Newton algorithm for regularized semi-discrete
  optimal transport
A stochastic Gauss-Newton algorithm for regularized semi-discrete optimal transport
Bernard Bercu
Jérémie Bigot
S. Gadat
Emilia Siviero
142
6
0
12 Jul 2021
Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical
  Solution
Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical Solution
Bahar Taşkesen
Soroosh Shafieezadeh-Abadeh
Daniel Kuhn
OT
110
31
0
10 Mar 2021
Learning to Generate Wasserstein Barycenters
Learning to Generate Wasserstein Barycenters
Julien Lacombe
Julie Digne
Nicolas Courty
Nicolas Bonneel
99
12
0
24 Feb 2021
Distributed Wasserstein Barycenters via Displacement Interpolation
Distributed Wasserstein Barycenters via Displacement Interpolation
Pedro Cisneros-Velarde
Francesco Bullo
77
4
0
15 Dec 2020
Randomised Wasserstein Barycenter Computation: Resampling with
  Statistical Guarantees
Randomised Wasserstein Barycenter Computation: Resampling with Statistical Guarantees
F. Heinemann
Axel Munk
Y. Zemel
110
18
0
11 Dec 2020
A Statistical Test for Probabilistic Fairness
A Statistical Test for Probabilistic Fairness
Bahar Taşkesen
Jose H. Blanchet
Daniel Kuhn
Viet Anh Nguyen
FaML
142
47
0
09 Dec 2020
LCS Graph Kernel Based on Wasserstein Distance in Longest Common
  Subsequence Metric Space
LCS Graph Kernel Based on Wasserstein Distance in Longest Common Subsequence Metric Space
Jianming Huang
Zhongxi Fang
Hiroyuki Kasai
158
20
0
07 Dec 2020
Matching Distributions via Optimal Transport for Semi-Supervised
  Learning
Matching Distributions via Optimal Transport for Semi-Supervised Learning
Fariborz Taherkhani
Hadi Kazemi
Ali Dabouei
J. Dawson
Nasser M. Nasrabadi
OT
145
1
0
04 Dec 2020
Wasserstein Embedding for Graph Learning
Wasserstein Embedding for Graph Learning
Soheil Kolouri
Navid Naderializadeh
Gustavo K. Rohde
Heiko Hoffmann
GNN
162
92
0
16 Jun 2020
Estimation of Wasserstein distances in the Spiked Transport Model
Estimation of Wasserstein distances in the Spiked Transport ModelBernoulli (Bernoulli), 2024
Jonathan Niles-Weed
Philippe Rigollet
106
107
0
16 Sep 2019
Wasserstein Distributionally Robust Optimization: Theory and
  Applications in Machine Learning
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
146
429
0
23 Aug 2019
Statistical data analysis in the Wasserstein space
Statistical data analysis in the Wasserstein spaceESAIM Proceedings and Surveys (ESAIM Proc. Surv.), 2024
Jérémie Bigot
138
35
0
19 Jul 2019
Minimax estimation of smooth optimal transport maps
Minimax estimation of smooth optimal transport maps
Jan-Christian Hütter
Philippe Rigollet
OT
159
29
0
14 May 2019
Learning Embeddings into Entropic Wasserstein Spaces
Learning Embeddings into Entropic Wasserstein SpacesInternational Conference on Learning Representations (ICLR), 2025
Charlie Frogner
F. Mirzazadeh
Justin Solomon
106
33
0
08 May 2019
Asymptotic distribution and convergence rates of stochastic algorithms
  for entropic optimal transportation between probability measures
Asymptotic distribution and convergence rates of stochastic algorithms for entropic optimal transportation between probability measuresAnnals of Statistics (Ann. Stat.), 2025
Bernard Bercu
Jérémie Bigot
131
20
0
21 Dec 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
575
2,290
0
01 Mar 2018
Central limit theorems for entropy-regularized optimal transport on
  finite spaces and statistical applications
Central limit theorems for entropy-regularized optimal transport on finite spaces and statistical applicationsElectronic Journal of Statistics (EJS), 2024
Jérémie Bigot
Elsa Cazelles
Nicolas Papadakis
OT
147
42
0
24 Nov 2017
Large-Scale Optimal Transport and Mapping Estimation
Large-Scale Optimal Transport and Mapping EstimationInternational Conference on Learning Representations (ICLR), 2025
Vivien Seguy
B. Damodaran
Rémi Flamary
Nicolas Courty
Antoine Rolet
Mathieu Blondel
OT
164
259
0
07 Nov 2017
Learning Wasserstein Embeddings
Learning Wasserstein EmbeddingsInternational Conference on Learning Representations (ICLR), 2025
Nicolas Courty
Rémi Flamary
Mélanie Ducoffe
105
67
0
20 Oct 2017
Wasserstein Dictionary Learning: Optimal Transport-based unsupervised
  non-linear dictionary learning
Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learningSIAM Journal of Imaging Sciences (SIIMS), 2025
M. Schmitz
Matthieu Heitz
Nicolas Bonneel
Fred-Maurice Ngole-Mboula
D. Coeurjolly
Marco Cuturi
Gabriel Peyré
Jean-Luc Starck
OT
196
138
0
07 Aug 2017
Regularized Optimal Transport and the Rot Mover's Distance
Regularized Optimal Transport and the Rot Mover's DistanceJournal of machine learning research (JMLR), 2024
Arnaud Dessein
Nicolas Papadakis
Jean-Luc Rouas
OT
211
90
0
20 Oct 2016
Robust Wasserstein Profile Inference and Applications to Machine
  Learning
Robust Wasserstein Profile Inference and Applications to Machine LearningJournal of Applied Probability (J. Appl. Probab.), 2024
Jose H. Blanchet
Yang Kang
Karthyek Murthy
OOD
283
347
0
18 Oct 2016
Transport-based analysis, modeling, and learning from signal and data
  distributions
Transport-based analysis, modeling, and learning from signal and data distributions
Soheil Kolouri
Serim Park
Matthew Thorpe
D. Slepčev
Gustavo K. Rohde
DiffM
101
31
0
15 Sep 2016
Wasserstein Discriminant Analysis
Wasserstein Discriminant AnalysisMachine-mediated learning (ML), 2025
Rémi Flamary
Marco Cuturi
Nicolas Courty
A. Rakotomamonjy
204
105
0
29 Aug 2016
A Simulated Annealing based Inexact Oracle for Wasserstein Loss
  Minimization
A Simulated Annealing based Inexact Oracle for Wasserstein Loss MinimizationInternational Conference on Machine Learning (ICML), 2025
Jianbo Ye
James Z. Wang
Jia Li
103
5
0
12 Aug 2016
Sliced Wasserstein Kernels for Probability Distributions
Sliced Wasserstein Kernels for Probability DistributionsComputer Vision and Pattern Recognition (CVPR), 2023
Soheil Kolouri
Yang Zou
Gustavo K. Rohde
118
166
0
10 Nov 2015
1