ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1506.08776
  4. Cited By
Bayesian Nonparametric Kernel-Learning

Bayesian Nonparametric Kernel-Learning

29 June 2015
Junier Oliva
Kumar Avinava Dubey
A. Wilson
Barnabás Póczós
J. Schneider
Eric Xing
    BDL
ArXivPDFHTML

Papers citing "Bayesian Nonparametric Kernel-Learning"

9 / 9 papers shown
Title
Preventing Model Collapse in Gaussian Process Latent Variable Models
Preventing Model Collapse in Gaussian Process Latent Variable Models
Ying Li
Zhidi Lin
Feng Yin
Michael Minyi Zhang
VLM
35
1
0
02 Apr 2024
Sparse Infinite Random Feature Latent Variable Modeling
Sparse Infinite Random Feature Latent Variable Modeling
M. Zhang
14
1
0
20 May 2022
Modelling Non-Smooth Signals with Complex Spectral Structure
Modelling Non-Smooth Signals with Complex Spectral Structure
W. Bruinsma
Martin Tegnér
Richard Turner
30
6
0
14 Mar 2022
Gaussian Processes with Skewed Laplace Spectral Mixture Kernels for
  Long-term Forecasting
Gaussian Processes with Skewed Laplace Spectral Mixture Kernels for Long-term Forecasting
Kai Chen
Twan van Laarhoven
E. Marchiori
AI4TS
39
8
0
08 Nov 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
44
172
0
23 Apr 2020
Maximum likelihood estimation and uncertainty quantification for
  Gaussian process approximation of deterministic functions
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
Toni Karvonen
George Wynne
Filip Tronarp
Chris J. Oates
Simo Särkkä
34
39
0
29 Jan 2020
ORCCA: Optimal Randomized Canonical Correlation Analysis
ORCCA: Optimal Randomized Canonical Correlation Analysis
Yinsong Wang
Shahin Shahrampour
11
5
0
11 Oct 2019
Differentiable Compositional Kernel Learning for Gaussian Processes
Differentiable Compositional Kernel Learning for Gaussian Processes
Shengyang Sun
Guodong Zhang
Chaoqi Wang
Wenyuan Zeng
Jiaman Li
Roger C. Grosse
BDL
23
69
0
12 Jun 2018
Sketching for Large-Scale Learning of Mixture Models
Sketching for Large-Scale Learning of Mixture Models
Nicolas Keriven
Anthony Bourrier
Rémi Gribonval
Patrick Pérez
37
75
0
09 Jun 2016
1