ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.04513
  4. Cited By
Scalable Gaussian Process Classification via Expectation Propagation

Scalable Gaussian Process Classification via Expectation Propagation

16 July 2015
Daniel Hernández-Lobato
José Miguel Hernández-Lobato
ArXiv (abs)PDFHTML

Papers citing "Scalable Gaussian Process Classification via Expectation Propagation"

18 / 18 papers shown
Title
An Uncertainty-Aware Deep Learning Framework for Defect Detection in
  Casting Products
An Uncertainty-Aware Deep Learning Framework for Defect Detection in Casting Products
Maryam Habibpour
Hassan Gharoun
AmirReza Tajally
Afshar Shamsi Jokandan
Hamzeh Asgharnezhad
Abbas Khosravi
S. Nahavandi
UQCV
63
16
0
24 Jul 2021
A unified framework for closed-form nonparametric regression,
  classification, preference and mixed problems with Skew Gaussian Processes
A unified framework for closed-form nonparametric regression, classification, preference and mixed problems with Skew Gaussian Processes
A. Benavoli
Dario Azzimonti
Dario Piga
67
15
0
12 Dec 2020
Stein Variational Gaussian Processes
Stein Variational Gaussian Processes
Thomas Pinder
Christopher Nemeth
David Leslie
BDL
37
7
0
25 Sep 2020
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma
  Augmented Gaussian Processes
Bayesian Few-Shot Classification with One-vs-Each Pólya-Gamma Augmented Gaussian Processes
Jake C. Snell
R. Zemel
104
63
0
20 Jul 2020
Deep Sigma Point Processes
Deep Sigma Point Processes
M. Jankowiak
Geoff Pleiss
Jacob R. Gardner
BDL
69
22
0
21 Feb 2020
Scalable Gaussian Process Classification with Additive Noise for Various
  Likelihoods
Scalable Gaussian Process Classification with Additive Noise for Various Likelihoods
Haitao Liu
Yew-Soon Ong
Ziwei Yu
Jianfei Cai
Xiaobo Shen
57
3
0
14 Sep 2019
Knowing The What But Not The Where in Bayesian Optimization
Knowing The What But Not The Where in Bayesian Optimization
Vu Nguyen
Michael A. Osborne
104
38
0
07 May 2019
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
136
697
0
03 Jul 2018
Dirichlet-based Gaussian Processes for Large-scale Calibrated
  Classification
Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification
Dimitrios Milios
Raffaello Camoriano
Pietro Michiardi
Lorenzo Rosasco
Maurizio Filippone
UQCV
78
75
0
28 May 2018
Efficient Gaussian Process Classification Using Polya-Gamma Data
  Augmentation
Efficient Gaussian Process Classification Using Polya-Gamma Data Augmentation
F. Wenzel
Théo Galy-Fajou
Christian Donner
Marius Kloft
Manfred Opper
89
36
0
18 Feb 2018
Convolutional Gaussian Processes
Convolutional Gaussian Processes
Mark van der Wilk
C. Rasmussen
J. Hensman
BDL
90
132
0
06 Sep 2017
Expectation Propagation for t-Exponential Family Using Q-Algebra
Expectation Propagation for t-Exponential Family Using Q-Algebra
Futoshi Futami
Issei Sato
Masashi Sugiyama
68
6
0
25 May 2017
Streaming Sparse Gaussian Process Approximations
Streaming Sparse Gaussian Process Approximations
T. Bui
Cuong V Nguyen
Richard Turner
80
103
0
19 May 2017
Generic Inference in Latent Gaussian Process Models
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla
K. Krauth
Amir Dezfouli
BDL
64
28
0
02 Sep 2016
A Unifying Framework for Gaussian Process Pseudo-Point Approximations
  using Power Expectation Propagation
A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation
T. Bui
Josiah Yan
Richard Turner
89
25
0
23 May 2016
Scalable Gaussian Processes for Supervised Hashing
Scalable Gaussian Processes for Supervised Hashing
B. Ozdemir
L. Davis
29
2
0
25 Apr 2016
Training Deep Gaussian Processes using Stochastic Expectation
  Propagation and Probabilistic Backpropagation
Training Deep Gaussian Processes using Stochastic Expectation Propagation and Probabilistic Backpropagation
T. Bui
José Miguel Hernández-Lobato
Yingzhen Li
Daniel Hernández-Lobato
Richard Turner
BDLGP
61
8
0
11 Nov 2015
Black-box $α$-divergence Minimization
Black-box ααα-divergence Minimization
José Miguel Hernández-Lobato
Yingzhen Li
Mark Rowland
Daniel Hernández-Lobato
T. Bui
Richard Turner
127
139
0
10 Nov 2015
1