ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1507.04717
  4. Cited By
Less is More: Nyström Computational Regularization
v1v2v3v4v5v6 (latest)

Less is More: Nyström Computational Regularization

16 July 2015
Alessandro Rudi
Raffaello Camoriano
Lorenzo Rosasco
ArXiv (abs)PDFHTML

Papers citing "Less is More: Nyström Computational Regularization"

50 / 166 papers shown
Title
Learning Where to Learn: Training Distribution Selection for Provable OOD Performance
Learning Where to Learn: Training Distribution Selection for Provable OOD Performance
Nicolas Guerra
Nicholas H. Nelsen
Yunan Yang
OOD
81
0
0
27 May 2025
Computational Efficiency under Covariate Shift in Kernel Ridge Regression
Computational Efficiency under Covariate Shift in Kernel Ridge Regression
Andrea Della Vecchia
Arnaud Mavakala Watusadisi
Ernesto De Vito
Lorenzo Rosasco
47
0
0
20 May 2025
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Pratik Rathore
Zachary Frangella
Sachin Garg
Shaghayegh Fazliani
Michał Dereziński
Madeleine Udell
55
0
0
19 May 2025
Random Forest Autoencoders for Guided Representation Learning
Random Forest Autoencoders for Guided Representation Learning
Adrien Aumon
Shuang Ni
Myriam Lizotte
Guy Wolf
Kevin R. Moon
Jake S. Rhodes
180
0
0
18 Feb 2025
Convergence Analysis of regularised Nyström method for Functional
  Linear Regression
Convergence Analysis of regularised Nyström method for Functional Linear Regression
Naveen Gupta
Sivananthan Sampath
83
0
0
25 Oct 2024
fastkqr: A Fast Algorithm for Kernel Quantile Regression
fastkqr: A Fast Algorithm for Kernel Quantile Regression
Qian Tang
Yuwen Gu
Boxiang Wang
60
1
0
10 Aug 2024
Learning to Embed Distributions via Maximum Kernel Entropy
Learning to Embed Distributions via Maximum Kernel Entropy
Oleksii Kachaiev
Stefano Recanatesi
OOD
120
0
0
01 Aug 2024
A Hybrid Federated Kernel Regularized Least Squares Algorithm
A Hybrid Federated Kernel Regularized Least Squares Algorithm
Celeste Damiani
Yulia Rodina
Sergio Decherchi
FedML
61
3
0
24 Jul 2024
Have ASkotch: A Neat Solution for Large-scale Kernel Ridge Regression
Have ASkotch: A Neat Solution for Large-scale Kernel Ridge Regression
Pratik Rathore
Zachary Frangella
Madeleine Udell
Michał Dereziński
Madeleine Udell
108
3
0
14 Jul 2024
Operator World Models for Reinforcement Learning
Operator World Models for Reinforcement Learning
P. Novelli
Marco Prattico
Massimiliano Pontil
C. Ciliberto
OffRL
122
1
0
28 Jun 2024
Structured Prediction in Online Learning
Structured Prediction in Online Learning
Pierre Boudart
Alessandro Rudi
Pierre Gaillard
33
0
0
18 Jun 2024
Deep Sketched Output Kernel Regression for Structured Prediction
Deep Sketched Output Kernel Regression for Structured Prediction
T. Ahmad
Junjie Yang
Pierre Laforgue
Florence dÁlché-Buc
UQCV
85
1
0
13 Jun 2024
Nyström Kernel Stein Discrepancy
Nyström Kernel Stein Discrepancy
Florian Kalinke
Zoltan Szabo
Bharath K. Sriperumbudur
114
1
0
12 Jun 2024
On the Approximation of Kernel functions
On the Approximation of Kernel functions
Paul Dommel
Alois Pichler
132
0
0
11 Mar 2024
Linear quadratic control of nonlinear systems with Koopman operator learning and the Nyström method
Linear quadratic control of nonlinear systems with Koopman operator learning and the Nyström method
Edoardo Caldarelli
Antoine Chatalic
Adrià Colomé
C. Molinari
C. Ocampo‐Martinez
Carme Torras
Lorenzo Rosasco
105
0
0
05 Mar 2024
A Bound on the Maximal Marginal Degrees of Freedom
A Bound on the Maximal Marginal Degrees of Freedom
Paul Dommel
191
1
0
20 Feb 2024
Closed-form Filtering for Non-linear Systems
Closed-form Filtering for Non-linear Systems
Théophile Cantelobre
C. Ciliberto
Benjamin Guedj
Alessandro Rudi
30
0
0
15 Feb 2024
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized
  Least-Squares Algorithm
Towards Optimal Sobolev Norm Rates for the Vector-Valued Regularized Least-Squares Algorithm
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
143
8
0
12 Dec 2023
A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge
  Regression
A Theoretical Analysis of the Test Error of Finite-Rank Kernel Ridge Regression
Tin Sum Cheng
Aurelien Lucchi
Ivan Dokmanić
Anastasis Kratsios
David Belius
61
5
0
02 Oct 2023
A Structured Prediction Approach for Robot Imitation Learning
A Structured Prediction Approach for Robot Imitation Learning
Anqing Duan
Iason Batzianoulis
Raffaello Camoriano
Lorenzo Rosasco
Daniele Pucci
A. Billard
50
5
0
26 Sep 2023
Adaptive Distributed Kernel Ridge Regression: A Feasible Distributed
  Learning Scheme for Data Silos
Adaptive Distributed Kernel Ridge Regression: A Feasible Distributed Learning Scheme for Data Silos
Di Wang
Xiaotong Liu
Shao-Bo Lin
Ding-Xuan Zhou
75
0
0
08 Sep 2023
On regularized Radon-Nikodym differentiation
On regularized Radon-Nikodym differentiation
Duc Hoan Nguyen
Werner Zellinger
S. Pereverzyev
38
7
0
15 Aug 2023
Nonparametric Linear Feature Learning in Regression Through
  Regularisation
Nonparametric Linear Feature Learning in Regression Through Regularisation
Bertille Follain
Francis R. Bach
65
4
0
24 Jul 2023
General regularization in covariate shift adaptation
General regularization in covariate shift adaptation
Hoan Duc Nguyen
S. Pereverzyev
Werner Zellinger
41
1
0
21 Jul 2023
Nonlinear Meta-Learning Can Guarantee Faster Rates
Nonlinear Meta-Learning Can Guarantee Faster Rates
Dimitri Meunier
Zhu Li
Arthur Gretton
Samory Kpotufe
170
7
0
20 Jul 2023
Nearly Optimal Algorithms with Sublinear Computational Complexity for
  Online Kernel Regression
Nearly Optimal Algorithms with Sublinear Computational Complexity for Online Kernel Regression
Junfan Li
Shizhong Liao
139
0
0
14 Jun 2023
Estimating Koopman operators with sketching to provably learn large
  scale dynamical systems
Estimating Koopman operators with sketching to provably learn large scale dynamical systems
Giacomo Meanti
Antoine Chatalic
Vladimir Kostic
P. Novelli
Massimiliano Pontil
Lorenzo Rosasco
90
11
0
07 Jun 2023
Label Shift Quantification with Robustness Guarantees via Distribution
  Feature Matching
Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching
Bastien Dussap
Gilles Blanchard
Badr-Eddine Chérief-Abdellatif
OOD
46
8
0
07 Jun 2023
The Galerkin method beats Graph-Based Approaches for Spectral Algorithms
The Galerkin method beats Graph-Based Approaches for Spectral Algorithms
Vivien A. Cabannes
Francis R. Bach
66
3
0
01 Jun 2023
Generalized equivalences between subsampling and ridge regularization
Generalized equivalences between subsampling and ridge regularization
Pratik V. Patil
Jin-Hong Du
91
5
0
29 May 2023
Lp- and Risk Consistency of Localized SVMs
Lp- and Risk Consistency of Localized SVMs
Hannes Köhler
117
0
0
16 May 2023
Snacks: a fast large-scale kernel SVM solver
Snacks: a fast large-scale kernel SVM solver
Sofiane Tanji
Andrea Della Vecchia
François Glineur
S. Villa
29
0
0
17 Apr 2023
Fast kernel methods for Data Quality Monitoring as a goodness-of-fit
  test
Fast kernel methods for Data Quality Monitoring as a goodness-of-fit test
Gaia Grosso
Nicolò Lai
Marco Letizia
J. Pazzini
Marco Rando
Lorenzo Rosasco
A. Wulzer
M. Zanetti
43
6
0
09 Mar 2023
Sketching with Spherical Designs for Noisy Data Fitting on Spheres
Sketching with Spherical Designs for Noisy Data Fitting on Spheres
Shao-Bo Lin
Di Wang
Ding-Xuan Zhou
57
2
0
08 Mar 2023
Kernel-Based Distributed Q-Learning: A Scalable Reinforcement Learning Approach for Dynamic Treatment Regimes
Kernel-Based Distributed Q-Learning: A Scalable Reinforcement Learning Approach for Dynamic Treatment Regimes
Di Wang
Yao Wang
Shaojie Tang
OffRL
143
1
0
21 Feb 2023
Sketch In, Sketch Out: Accelerating both Learning and Inference for
  Structured Prediction with Kernels
Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels
T. Ahmad
Luc Brogat-Motte
Pierre Laforgue
Florence dÁlché-Buc
BDL
86
6
0
20 Feb 2023
Kernelized Diffusion maps
Kernelized Diffusion maps
Loucas Pillaud-Vivien
Francis R. Bach
68
7
0
13 Feb 2023
Vector-Valued Least-Squares Regression under Output Regularity
  Assumptions
Vector-Valued Least-Squares Regression under Output Regularity Assumptions
Luc Brogat-Motte
Alessandro Rudi
Céline Brouard
Juho Rousu
Florence dÁlché-Buc
77
6
0
16 Nov 2022
Asymptotics of the Sketched Pseudoinverse
Asymptotics of the Sketched Pseudoinverse
Daniel LeJeune
Pratik V. Patil
Hamid Javadi
Richard G. Baraniuk
Robert Tibshirani
54
10
0
07 Nov 2022
Target alignment in truncated kernel ridge regression
Target alignment in truncated kernel ridge regression
Arash A. Amini
R. Baumgartner
Dai Feng
51
3
0
28 Jun 2022
Sum-of-Squares Relaxations for Information Theory and Variational
  Inference
Sum-of-Squares Relaxations for Information Theory and Variational Inference
Francis R. Bach
63
12
0
27 Jun 2022
Fast Kernel Methods for Generic Lipschitz Losses via $p$-Sparsified
  Sketches
Fast Kernel Methods for Generic Lipschitz Losses via ppp-Sparsified Sketches
T. Ahmad
Pierre Laforgue
Florence dÁlché-Buc
107
5
0
08 Jun 2022
Collaborative likelihood-ratio estimation over graphs
Collaborative likelihood-ratio estimation over graphs
Alejandro de la Concha
Nicolas Vayatis
Argyris Kalogeratos
67
1
0
28 May 2022
Active Labeling: Streaming Stochastic Gradients
Active Labeling: Streaming Stochastic Gradients
Vivien A. Cabannes
Francis R. Bach
Vianney Perchet
Alessandro Rudi
110
2
0
26 May 2022
Fast Instrument Learning with Faster Rates
Fast Instrument Learning with Faster Rates
Ziyu Wang
Yuhao Zhou
Jun Zhu
100
3
0
22 May 2022
Wind power predictions from nowcasts to 4-hour forecasts: a learning
  approach with variable selection
Wind power predictions from nowcasts to 4-hour forecasts: a learning approach with variable selection
Dimitri Bouche
Rémi Flamary
Florence dÁlché-Buc
R. Plougonven
Marianne Clausel
J. Badosa
P. Drobinski
21
14
0
20 Apr 2022
Learning new physics efficiently with nonparametric methods
Learning new physics efficiently with nonparametric methods
Marco Letizia
Gianvito Losapio
Marco Rando
Gaia Grosso
A. Wulzer
M. Pierini
M. Zanetti
Lorenzo Rosasco
OOD
83
32
0
05 Apr 2022
Information Theory with Kernel Methods
Information Theory with Kernel Methods
Francis R. Bach
60
43
0
17 Feb 2022
Efficient Kernel UCB for Contextual Bandits
Efficient Kernel UCB for Contextual Bandits
Houssam Zenati
A. Bietti
Eustache Diemert
Julien Mairal
Matthieu Martin
Pierre Gaillard
117
4
0
11 Feb 2022
Measuring dissimilarity with diffeomorphism invariance
Measuring dissimilarity with diffeomorphism invariance
Théophile Cantelobre
C. Ciliberto
Benjamin Guedj
Alessandro Rudi
126
1
0
11 Feb 2022
1234
Next