Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1507.06970
Cited By
v1
v2 (latest)
Perturbed Iterate Analysis for Asynchronous Stochastic Optimization
24 July 2015
Horia Mania
Xinghao Pan
Dimitris Papailiopoulos
Benjamin Recht
Kannan Ramchandran
Michael I. Jordan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Perturbed Iterate Analysis for Asynchronous Stochastic Optimization"
50 / 134 papers shown
Title
HASFL: Heterogeneity-aware Split Federated Learning over Edge Computing Systems
Zheng Lin
Zhe Chen
Xianhao Chen
Wei Ni
Yue Gao
FedML
17
0
0
10 Jun 2025
Faster Stochastic Optimization with Arbitrary Delays via Asynchronous Mini-Batching
Amit Attia
Ofir Gaash
Tomer Koren
64
0
0
14 Aug 2024
FADAS: Towards Federated Adaptive Asynchronous Optimization
Yujia Wang
Shiqiang Wang
Songtao Lu
Jinghui Chen
FedML
72
5
0
25 Jul 2024
FedAST: Federated Asynchronous Simultaneous Training
Baris Askin
Pranay Sharma
Carlee Joe-Wong
Gauri Joshi
91
2
0
01 Jun 2024
Dual-Delayed Asynchronous SGD for Arbitrarily Heterogeneous Data
Xiaolu Wang
Yuchang Sun
Hoi-To Wai
Jun Zhang
80
0
0
27 May 2024
Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays
Charikleia Iakovidou
Kibaek Kim
FedML
76
3
0
16 May 2024
FedFa: A Fully Asynchronous Training Paradigm for Federated Learning
Haotian Xu
Zhaorui Zhang
Sheng Di
Benben Liu
Khalid Ayedh Alharthi
Jiannong Cao
FedML
69
10
0
17 Apr 2024
Distributed Learning based on 1-Bit Gradient Coding in the Presence of Stragglers
Chengxi Li
Mikael Skoglund
124
5
0
19 Mar 2024
AdaptSFL: Adaptive Split Federated Learning in Resource-constrained Edge Networks
Zhengyi Lin
Guanqiao Qu
Wei Wei
Xianhao Chen
Kin K. Leung
124
51
0
19 Mar 2024
Asynchronous SGD on Graphs: a Unified Framework for Asynchronous Decentralized and Federated Optimization
Mathieu Even
Anastasia Koloskova
Laurent Massoulié
FedML
118
14
0
01 Nov 2023
AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms
Rustem Islamov
M. Safaryan
Dan Alistarh
FedML
86
15
0
31 Oct 2023
Towards Understanding the Generalizability of Delayed Stochastic Gradient Descent
Xiaoge Deng
Li Shen
Shengwei Li
Tao Sun
Dongsheng Li
Dacheng Tao
85
3
0
18 Aug 2023
Asynchronous Federated Learning with Bidirectional Quantized Communications and Buffered Aggregation
Tomàs Ortega
Hamid Jafarkhani
FedML
75
6
0
01 Aug 2023
Locally Adaptive Federated Learning
Sohom Mukherjee
Nicolas Loizou
Sebastian U. Stich
FedML
56
2
0
12 Jul 2023
Differentially Private Wireless Federated Learning Using Orthogonal Sequences
Xizixiang Wei
Tianhao Wang
Ruiquan Huang
Cong Shen
Jing Yang
H. Vincent Poor
102
1
0
14 Jun 2023
On Convergence of Incremental Gradient for Non-Convex Smooth Functions
Anastasia Koloskova
N. Doikov
Sebastian U. Stich
Martin Jaggi
66
3
0
30 May 2023
Partially Personalized Federated Learning: Breaking the Curse of Data Heterogeneity
Konstantin Mishchenko
Rustem Islamov
Eduard A. Gorbunov
Samuel Horváth
FedML
92
11
0
29 May 2023
Considerations on the Theory of Training Models with Differential Privacy
Marten van Dijk
Phuong Ha Nguyen
FedML
91
2
0
08 Mar 2023
Stochastic Gradient Descent under Markovian Sampling Schemes
Mathieu Even
67
29
0
28 Feb 2023
Post Quantum Secure Blockchain-based Federated Learning for Mobile Edge Computing
Rongxin Xu
Shiva Raj Pokhrel
Qiujun Lan
Gang Li
61
5
0
26 Feb 2023
Stochastic Approximation Beyond Gradient for Signal Processing and Machine Learning
Aymeric Dieuleveut
G. Fort
Eric Moulines
Hoi-To Wai
74
12
0
22 Feb 2023
Gradient Descent with Linearly Correlated Noise: Theory and Applications to Differential Privacy
Anastasia Koloskova
Ryan McKenna
Zachary B. Charles
Keith Rush
Brendan McMahan
124
9
0
02 Feb 2023
Convergence of First-Order Algorithms for Meta-Learning with Moreau Envelopes
Konstantin Mishchenko
Slavomír Hanzely
Peter Richtárik
FedML
71
6
0
17 Jan 2023
Temporal Difference Learning with Compressed Updates: Error-Feedback meets Reinforcement Learning
A. Mitra
George J. Pappas
Hamed Hassani
76
12
0
03 Jan 2023
Random Orthogonalization for Federated Learning in Massive MIMO Systems
Xizixiang Wei
Cong Shen
Jing Yang
H. Vincent Poor
92
14
0
18 Oct 2022
Adaptive Step-Size Methods for Compressed SGD
Adarsh M. Subramaniam
A. Magesh
Venugopal V. Veeravalli
51
1
0
20 Jul 2022
Pisces: Efficient Federated Learning via Guided Asynchronous Training
Zhifeng Jiang
Wei Wang
Baochun Li
Yue Liu
FedML
71
25
0
18 Jun 2022
Sharper Convergence Guarantees for Asynchronous SGD for Distributed and Federated Learning
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
FedML
70
82
0
16 Jun 2022
Asynchronous SGD Beats Minibatch SGD Under Arbitrary Delays
Konstantin Mishchenko
Francis R. Bach
Mathieu Even
Blake E. Woodworth
83
61
0
15 Jun 2022
AsyncFedED: Asynchronous Federated Learning with Euclidean Distance based Adaptive Weight Aggregation
Qiyuan Wang
Qianqian Yang
Shibo He
Zhiguo Shi
Jiming Chen
FedML
162
28
0
27 May 2022
Distributed Dynamic Safe Screening Algorithms for Sparse Regularization
Runxue Bao
Xidong Wu
Wenhan Xian
Heng-Chiao Huang
82
1
0
23 Apr 2022
Nonlinear gradient mappings and stochastic optimization: A general framework with applications to heavy-tail noise
D. Jakovetić
Dragana Bajović
Anit Kumar Sahu
S. Kar
Nemanja Milošević
Dusan Stamenkovic
57
14
0
06 Apr 2022
Distributed Methods with Absolute Compression and Error Compensation
Marina Danilova
Eduard A. Gorbunov
44
5
0
04 Mar 2022
On Federated Learning with Energy Harvesting Clients
Cong Shen
Jing Yang
Jie Xu
FedML
60
6
0
12 Feb 2022
AET-SGD: Asynchronous Event-triggered Stochastic Gradient Descent
Nhuong V. Nguyen
Song Han
57
2
0
27 Dec 2021
Decentralized Multi-Task Stochastic Optimization With Compressed Communications
Navjot Singh
Xuanyu Cao
Suhas Diggavi
Tamer Basar
62
9
0
23 Dec 2021
Finite-Time Consensus Learning for Decentralized Optimization with Nonlinear Gossiping
Junya Chen
Sijia Wang
Lawrence Carin
Chenyang Tao
25
3
0
04 Nov 2021
Resource-Efficient Federated Learning
A. Abdelmoniem
Atal Narayan Sahu
Marco Canini
Suhaib A. Fahmy
FedML
91
57
0
01 Nov 2021
Accelerating Perturbed Stochastic Iterates in Asynchronous Lock-Free Optimization
Kaiwen Zhou
Anthony Man-Cho So
James Cheng
68
1
0
30 Sep 2021
Toward Efficient Federated Learning in Multi-Channeled Mobile Edge Network with Layerd Gradient Compression
Haizhou Du
Xiaojie Feng
Qiao Xiang
Haoyu Liu
50
0
0
18 Sep 2021
Asynchronous Iterations in Optimization: New Sequence Results and Sharper Algorithmic Guarantees
Hamid Reza Feyzmahdavian
M. Johansson
81
21
0
09 Sep 2021
Statistical Estimation and Inference via Local SGD in Federated Learning
Xiang Li
Jiadong Liang
Xiangyu Chang
Zhihua Zhang
FedML
58
4
0
03 Sep 2021
Distributed stochastic optimization with large delays
Zhengyuan Zhou
P. Mertikopoulos
Nicholas Bambos
Peter Glynn
Yinyu Ye
67
8
0
06 Jul 2021
Asynchronous Stochastic Optimization Robust to Arbitrary Delays
Alon Cohen
Amit Daniely
Yoel Drori
Tomer Koren
Mariano Schain
98
33
0
22 Jun 2021
Federated Learning with Buffered Asynchronous Aggregation
John Nguyen
Kshitiz Malik
Hongyuan Zhan
Ashkan Yousefpour
Michael G. Rabbat
Mani Malek
Dzmitry Huba
FedML
95
312
0
11 Jun 2021
Asynchronous speedup in decentralized optimization
Mathieu Even
Hadrien Hendrikx
Laurent Massoulie
50
5
0
07 Jun 2021
Pufferfish: Communication-efficient Models At No Extra Cost
Hongyi Wang
Saurabh Agarwal
Dimitris Papailiopoulos
85
59
0
05 Mar 2021
Critical Parameters for Scalable Distributed Learning with Large Batches and Asynchronous Updates
Sebastian U. Stich
Amirkeivan Mohtashami
Martin Jaggi
71
22
0
03 Mar 2021
Preserved central model for faster bidirectional compression in distributed settings
Constantin Philippenko
Aymeric Dieuleveut
67
31
0
24 Feb 2021
Consistent Lock-free Parallel Stochastic Gradient Descent for Fast and Stable Convergence
Karl Bäckström
Ivan Walulya
Marina Papatriantafilou
P. Tsigas
67
5
0
17 Feb 2021
1
2
3
Next