ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1508.03096
  4. Cited By
Deep Neural Network Based Malware Detection Using Two Dimensional Binary
  Program Features

Deep Neural Network Based Malware Detection Using Two Dimensional Binary Program Features

13 August 2015
Joshua Saxe
Konstantin Berlin
ArXivPDFHTML

Papers citing "Deep Neural Network Based Malware Detection Using Two Dimensional Binary Program Features"

50 / 58 papers shown
Title
Target Attack Backdoor Malware Analysis and Attribution
Target Attack Backdoor Malware Analysis and Attribution
Anthony Cheuk Tung Lai
Vitaly Kamluk
Alan Ho
Ping Fan Ke
Byron Wai
74
0
0
04 Feb 2025
MalMixer: Few-Shot Malware Classification with Retrieval-Augmented Semi-Supervised Learning
MalMixer: Few-Shot Malware Classification with Retrieval-Augmented Semi-Supervised Learning
Eric Li
Yifan Zhang
Yu Huang
Kevin Leach
39
0
0
20 Sep 2024
SLIFER: Investigating Performance and Robustness of Malware Detection
  Pipelines
SLIFER: Investigating Performance and Robustness of Malware Detection Pipelines
Andrea Ponte
Dmitrijs Trizna
Christian Scano
Battista Biggio
Ivan Tesfai Ogbu
Fabio Roli
49
0
0
23 May 2024
EGAN: Evolutional GAN for Ransomware Evasion
EGAN: Evolutional GAN for Ransomware Evasion
Daniel Commey
Benjamin Appiah
B. K. Frimpong
Isaac Osei
Ebenezer N. A. Hammond
Garth V. Crosby
AAML
GAN
37
0
0
20 May 2024
Decoding the Secrets of Machine Learning in Malware Classification: A
  Deep Dive into Datasets, Feature Extraction, and Model Performance
Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive into Datasets, Feature Extraction, and Model Performance
Savino Dambra
Yufei Han
Simone Aonzo
Platon Kotzias
Antonino Vitale
Juan Caballero
Davide Balzarotti
Leyla Bilge
21
23
0
27 Jul 2023
Sequential Embedding-based Attentive (SEA) classifier for malware
  classification
Sequential Embedding-based Attentive (SEA) classifier for malware classification
Muhammad Ahmed
Anam Qureshi
J. Shamsi
Murk Marvi
19
1
0
11 Feb 2023
Machine Learning for Detecting Malware in PE Files
Machine Learning for Detecting Malware in PE Files
Collin Connors
Dilip Sarkar
22
6
0
12 Dec 2022
Adversarial Attacks on Transformers-Based Malware Detectors
Adversarial Attacks on Transformers-Based Malware Detectors
Yash Jakhotiya
Heramb Patil
Jugal Rawlani
Dr. Sunil B. Mane
AAML
23
4
0
01 Oct 2022
Firenze: Model Evaluation Using Weak Signals
Firenze: Model Evaluation Using Weak Signals
Bhavna Soman
A. Torkamani
Michael J. Morais
Jeffrey Bickford
Baris Coskun
35
2
0
02 Jul 2022
Do You Think You Can Hold Me? The Real Challenge of Problem-Space
  Evasion Attacks
Do You Think You Can Hold Me? The Real Challenge of Problem-Space Evasion Attacks
Harel Berger
A. Dvir
Chen Hajaj
Rony Ronen
AAML
29
3
0
09 May 2022
Adversarial Attacks against Windows PE Malware Detection: A Survey of
  the State-of-the-Art
Adversarial Attacks against Windows PE Malware Detection: A Survey of the State-of-the-Art
Xiang Ling
Lingfei Wu
Jiangyu Zhang
Zhenqing Qu
Wei Deng
...
Chunming Wu
S. Ji
Tianyue Luo
Jingzheng Wu
Yanjun Wu
AAML
47
74
0
23 Dec 2021
A Comparison of State-of-the-Art Techniques for Generating Adversarial
  Malware Binaries
A Comparison of State-of-the-Art Techniques for Generating Adversarial Malware Binaries
P. Dasgupta
Zachary Osman
AAML
36
2
0
22 Nov 2021
AI Total: Analyzing Security ML Models with Imperfect Data in Production
AI Total: Analyzing Security ML Models with Imperfect Data in Production
Awalin Sopan
Konstantin Berlin
26
2
0
13 Oct 2021
Power-Based Attacks on Spatial DNN Accelerators
Power-Based Attacks on Spatial DNN Accelerators
Ge Li
Mohit Tiwari
Michael Orshansky
38
8
0
28 Aug 2021
Leveraging Uncertainty for Improved Static Malware Detection Under
  Extreme False Positive Constraints
Leveraging Uncertainty for Improved Static Malware Detection Under Extreme False Positive Constraints
A. Nguyen
Edward Raff
Charles K. Nicholas
James Holt
41
21
0
09 Aug 2021
Segmented Federated Learning for Adaptive Intrusion Detection System
Segmented Federated Learning for Adaptive Intrusion Detection System
Geet Shingi
Harsh Saglani
Preeti Jain
FedML
16
2
0
02 Jul 2021
secml-malware: Pentesting Windows Malware Classifiers with Adversarial
  EXEmples in Python
secml-malware: Pentesting Windows Malware Classifiers with Adversarial EXEmples in Python
Christian Scano
Battista Biggio
AAML
37
11
0
26 Apr 2021
Anomaly Detection Support Using Process Classification
Anomaly Detection Support Using Process Classification
Sebastian Eresheim
Lukas Daniel Klausner
Patrick Kochberger
20
0
0
13 Jan 2021
Assessment of the Relative Importance of different hyper-parameters of
  LSTM for an IDS
Assessment of the Relative Importance of different hyper-parameters of LSTM for an IDS
Mohit Sewak
S. K. Sahay
Hemant Rathore
17
7
0
26 Dec 2020
Generating End-to-End Adversarial Examples for Malware Classifiers Using
  Explainability
Generating End-to-End Adversarial Examples for Malware Classifiers Using Explainability
Ishai Rosenberg
Shai Meir
J. Berrebi
I. Gordon
Guillaume Sicard
Eli David
AAML
SILM
11
25
0
28 Sep 2020
Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
  Attacks on Machine Learning for Windows Malware Detection
Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection
Christian Scano
Scott E. Coull
Battista Biggio
Giovanni Lagorio
A. Armando
Fabio Roli
AAML
35
59
0
17 Aug 2020
A Survey of Machine Learning Methods and Challenges for Windows Malware
  Classification
A Survey of Machine Learning Methods and Challenges for Windows Malware Classification
Edward Raff
Charles K. Nicholas
AAML
29
54
0
15 Jun 2020
Arms Race in Adversarial Malware Detection: A Survey
Arms Race in Adversarial Malware Detection: A Survey
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
24
52
0
24 May 2020
Functionality-preserving Black-box Optimization of Adversarial Windows
  Malware
Functionality-preserving Black-box Optimization of Adversarial Windows Malware
Christian Scano
Battista Biggio
Giovanni Lagorio
Fabio Roli
A. Armando
AAML
28
139
0
30 Mar 2020
MAB-Malware: A Reinforcement Learning Framework for Attacking Static
  Malware Classifiers
MAB-Malware: A Reinforcement Learning Framework for Attacking Static Malware Classifiers
Wei Song
Xuezixiang Li
Sadia Afroz
D. Garg
Dmitry Kuznetsov
Heng Yin
AAML
53
27
0
06 Mar 2020
Analyzing Accuracy Loss in Randomized Smoothing Defenses
Analyzing Accuracy Loss in Randomized Smoothing Defenses
Yue Gao
Harrison Rosenberg
Kassem Fawaz
S. Jha
Justin Hsu
AAML
24
6
0
03 Mar 2020
Explanation-Guided Backdoor Poisoning Attacks Against Malware
  Classifiers
Explanation-Guided Backdoor Poisoning Attacks Against Malware Classifiers
Giorgio Severi
J. Meyer
Scott E. Coull
Alina Oprea
AAML
SILM
29
18
0
02 Mar 2020
Tools and Techniques for Malware Detection and Analysis
Sajedul Talukder
14
33
0
17 Feb 2020
Using Deep Learning to Solve Computer Security Challenges: A Survey
Using Deep Learning to Solve Computer Security Challenges: A Survey
Yoon-Ho Choi
Peng Liu
Zitong Shang
Haizhou Wang
Zhilong Wang
Lan Zhang
Junwei Zhou
Qingtian Zou
AAML
30
33
0
12 Dec 2019
Neurlux: Dynamic Malware Analysis Without Feature Engineering
Neurlux: Dynamic Malware Analysis Without Feature Engineering
Chani Jindal
Christopher Salls
H. Aghakhani
Keith Long
Christopher Kruegel
Giovanni Vigna
24
62
0
24 Oct 2019
Ransomware Analysis using Feature Engineering and Deep Neural Networks
Ransomware Analysis using Feature Engineering and Deep Neural Networks
Arslan Ashraf
Abdul Aziz
Umme Zahoora
Muttukrishnan Rajarajan
Asifullah Khan
24
11
0
01 Oct 2019
A Convolutional Transformation Network for Malware Classification
A Convolutional Transformation Network for Malware Classification
Duc-Ly Vu
Trong-Kha Nguyen
Tam V. Nguyen
Tu N. Nguyen
Fabio Massacci
Phu H. Phung
11
50
0
16 Sep 2019
Malware Detection with LSTM using Opcode Language
Malware Detection with LSTM using Opcode Language
Renjie Lu
9
42
0
10 Jun 2019
On Training Robust PDF Malware Classifiers
On Training Robust PDF Malware Classifiers
Yizheng Chen
Shiqi Wang
Dongdong She
Suman Jana
AAML
50
68
0
06 Apr 2019
ALOHA: Auxiliary Loss Optimization for Hypothesis Augmentation
ALOHA: Auxiliary Loss Optimization for Hypothesis Augmentation
Ethan M. Rudd
Felipe N. Ducau
Cody Wild
Konstantin Berlin
Richard E. Harang
AAML
19
29
0
13 Mar 2019
On the security relevance of weights in deep learning
On the security relevance of weights in deep learning
Kathrin Grosse
T. A. Trost
Marius Mosbach
Michael Backes
Dietrich Klakow
AAML
32
6
0
08 Feb 2019
Explaining Vulnerabilities of Deep Learning to Adversarial Malware
  Binaries
Explaining Vulnerabilities of Deep Learning to Adversarial Malware Binaries
Christian Scano
Battista Biggio
Giovanni Lagorio
Fabio Roli
A. Armando
AAML
24
129
0
11 Jan 2019
A short review on Applications of Deep learning for Cyber security
A short review on Applications of Deep learning for Cyber security
R. MohammedHarunBabu
R. Vinayakumar
K. Soman
AAML
17
19
0
15 Dec 2018
Deep Learning Application in Security and Privacy -- Theory and
  Practice: A Position Paper
Deep Learning Application in Security and Privacy -- Theory and Practice: A Position Paper
Julia A. Meister
Raja Naeem Akram
K. Markantonakis
26
0
0
01 Dec 2018
Towards Principled Uncertainty Estimation for Deep Neural Networks
Towards Principled Uncertainty Estimation for Deep Neural Networks
Richard E. Harang
Ethan M. Rudd
BDL
UQCV
33
6
0
29 Oct 2018
Applications of Graph Integration to Function Comparison and Malware
  Classification
Applications of Graph Integration to Function Comparison and Malware Classification
M. Slawinski
Andy Wortman
17
2
0
11 Oct 2018
Procedural Noise Adversarial Examples for Black-Box Attacks on Deep
  Convolutional Networks
Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks
Kenneth T. Co
Luis Muñoz-González
Sixte de Maupeou
Emil C. Lupu
AAML
22
67
0
30 Sep 2018
Deep learning at the shallow end: Malware classification for non-domain
  experts
Deep learning at the shallow end: Malware classification for non-domain experts
Quan Le
Oisín Boydell
Brian Mac Namee
Mark Scanlon
78
173
0
22 Jul 2018
Non-Negative Networks Against Adversarial Attacks
Non-Negative Networks Against Adversarial Attacks
William Fleshman
Edward Raff
Jared Sylvester
Steven Forsyth
Mark McLean
AAML
27
41
0
15 Jun 2018
Hardware Trojan Attacks on Neural Networks
Hardware Trojan Attacks on Neural Networks
Joseph Clements
Yingjie Lao
AAML
27
89
0
14 Jun 2018
MEADE: Towards a Malicious Email Attachment Detection Engine
MEADE: Towards a Malicious Email Attachment Detection Engine
Ethan M. Rudd
Richard E. Harang
Joshua Saxe
33
33
0
22 Apr 2018
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust
  Deep Learning
Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning
Nicolas Papernot
Patrick McDaniel
OOD
AAML
13
504
0
13 Mar 2018
Microsoft Malware Classification Challenge
Microsoft Malware Classification Challenge
Royi Ronen
Marian Radu
Corina Feuerstein
E. Yom-Tov
Mansour Ahmadi
16
377
0
22 Feb 2018
Learning to Evade Static PE Machine Learning Malware Models via
  Reinforcement Learning
Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning
Hyrum S. Anderson
Anant Kharkar
Bobby Filar
David Evans
P. Roth
AAML
38
207
0
26 Jan 2018
Adversarial Deep Learning for Robust Detection of Binary Encoded Malware
Adversarial Deep Learning for Robust Detection of Binary Encoded Malware
Abdullah Al-Dujaili
Alex Huang
Erik Hemberg
Una-May O’Reilly
AAML
25
186
0
09 Jan 2018
12
Next