ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.00519
  4. Cited By
Importance Weighted Autoencoders
v1v2v3v4 (latest)

Importance Weighted Autoencoders

International Conference on Learning Representations (ICLR), 2015
1 September 2015
Yuri Burda
Roger C. Grosse
Ruslan Salakhutdinov
    BDL
ArXiv (abs)PDFHTML

Papers citing "Importance Weighted Autoencoders"

50 / 815 papers shown
Title
Deep generative models of genetic variation capture mutation effects
Deep generative models of genetic variation capture mutation effects
Adam J. Riesselman
John Ingraham
D. Marks
DRLBDL
111
25
0
18 Dec 2017
Faithful Inversion of Generative Models for Effective Amortized
  Inference
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
186
52
0
01 Dec 2017
Auxiliary Guided Autoregressive Variational Autoencoders
Auxiliary Guided Autoregressive Variational Autoencoders
Thomas Lucas
Jakob Verbeek
GANDRL
124
21
0
30 Nov 2017
Generalizing Hamiltonian Monte Carlo with Neural Networks
Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy
Matthew D. Hoffman
Jascha Narain Sohl-Dickstein
BDL
248
131
0
25 Nov 2017
Asymmetric Variational Autoencoders
Asymmetric Variational Autoencoders
Guoqing Zheng
Yiming Yang
J. Carbonell
BDL
122
2
0
20 Nov 2017
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
528
768
0
15 Nov 2017
Z-Forcing: Training Stochastic Recurrent Networks
Z-Forcing: Training Stochastic Recurrent Networks
Anirudh Goyal
Alessandro Sordoni
Marc-Alexandre Côté
Nan Rosemary Ke
Yoshua Bengio
BDL
190
193
0
15 Nov 2017
Adversarial Symmetric Variational Autoencoder
Adversarial Symmetric Variational Autoencoder
Yunchen Pu
Weiyao Wang
Ricardo Henao
Liqun Chen
Zhe Gan
Chunyuan Li
Lawrence Carin
DRLGAN
239
79
0
14 Nov 2017
Neural Variational Inference and Learning in Undirected Graphical Models
Neural Variational Inference and Learning in Undirected Graphical Models
Volodymyr Kuleshov
Stefano Ermon
BDL
169
34
0
07 Nov 2017
Convolutional Normalizing Flows
Convolutional Normalizing Flows
Guoqing Zheng
Yiming Yang
J. Carbonell
BDL
136
11
0
07 Nov 2017
Fast amortized inference of neural activity from calcium imaging data
  with variational autoencoders
Fast amortized inference of neural activity from calcium imaging data with variational autoencoders
Artur Speiser
Jinyao Yan
Evan Archer
Lars Buesing
Srinivas C. Turaga
Jakob H. Macke
BDL
124
48
0
06 Nov 2017
Metrics for Deep Generative Models
Metrics for Deep Generative Models
Nutan Chen
Alexej Klushyn
Richard Kurle
Xueyan Jiang
Justin Bayer
Patrick van der Smagt
SyDaDRL
144
121
0
03 Nov 2017
Neural Discrete Representation Learning
Neural Discrete Representation Learning
Aaron van den Oord
Oriol Vinyals
Koray Kavukcuoglu
BDLSSLOCL
615
6,256
0
02 Nov 2017
Fixing a Broken ELBO
Fixing a Broken ELBO
Alexander A. Alemi
Ben Poole
Ian S. Fischer
Joshua V. Dillon
Rif A. Saurous
Kevin Patrick Murphy
DRLBDL
342
82
0
01 Nov 2017
Latent Space Oddity: on the Curvature of Deep Generative Models
Latent Space Oddity: on the Curvature of Deep Generative Models
Georgios Arvanitidis
Lars Kai Hansen
Søren Hauberg
DRL
269
296
0
31 Oct 2017
Variational Continual Learning
Variational Continual LearningInternational Conference on Learning Representations (ICLR), 2017
Cuong V Nguyen
Yingzhen Li
T. Bui
Richard Turner
CLLVLMBDL
405
778
0
29 Oct 2017
On the challenges of learning with inference networks on sparse,
  high-dimensional data
On the challenges of learning with inference networks on sparse, high-dimensional data
Rahul G. Krishnan
Dawen Liang
Matthew Hoffman
CMLBDL
139
87
0
17 Oct 2017
Regularizing Deep Neural Networks by Noise: Its Interpretation and
  Optimization
Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization
Hyeonwoo Noh
Tackgeun You
Jonghwan Mun
Bohyung Han
NoLa
156
216
0
14 Oct 2017
Unsupervised Real-Time Control through Variational Empowerment
Unsupervised Real-Time Control through Variational Empowerment
Maximilian Karl
Maximilian Soelch
Philip Becker-Ehmck
Djalel Benbouzid
Patrick van der Smagt
Justin Bayer
116
57
0
13 Oct 2017
Perturbative Black Box Variational Inference
Perturbative Black Box Variational Inference
Kushagra Pandey
Cheng Zhang
Manfred Opper
Stephan Mandt
BDL
174
40
0
21 Sep 2017
Variational Memory Addressing in Generative Models
Variational Memory Addressing in Generative Models
J. Bornschein
A. Mnih
Daniel Zoran
Danilo Jimenez Rezende
BDL
136
63
0
21 Sep 2017
On Nesting Monte Carlo Estimators
On Nesting Monte Carlo Estimators
Tom Rainforth
R. Cornish
Hongseok Yang
Andrew Warrington
Frank Wood
335
146
0
18 Sep 2017
ZhuSuan: A Library for Bayesian Deep Learning
ZhuSuan: A Library for Bayesian Deep Learning
Jiaxin Shi
Jianfei Chen
Jun Zhu
Shengyang Sun
Yucen Luo
Yihong Gu
Yuhao Zhou
UQCVBDL
135
43
0
18 Sep 2017
Disentangled Variational Auto-Encoder for Semi-supervised Learning
Disentangled Variational Auto-Encoder for Semi-supervised Learning
Yang Li
Quan Pan
Suhang Wang
Haiyun Peng
Tao Yang
Xiaoshi Zhong
DRL
121
94
0
15 Sep 2017
Meta-Learning MCMC Proposals
Meta-Learning MCMC Proposals
Tongzhou Wang
Yi Wu
David A. Moore
Stuart J. Russell
BDL
366
2
0
21 Aug 2017
Energy-based Models for Video Anomaly Detection
Energy-based Models for Video Anomaly Detection
H. Vu
Dinh Q. Phung
T. Nguyen
Anthony Trevors
Svetha Venkatesh
137
23
0
17 Aug 2017
Learning to Draw Samples with Amortized Stein Variational Gradient
  Descent
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GANBDL
173
83
0
20 Jul 2017
Guiding InfoGAN with Semi-Supervision
Guiding InfoGAN with Semi-Supervision
Adrian Spurr
Emre Aksan
Otmar Hilliges
GAN
180
47
0
14 Jul 2017
Bayesian Semisupervised Learning with Deep Generative Models
Bayesian Semisupervised Learning with Deep Generative Models
Jonathan Gordon
José Miguel Hernández-Lobato
BDLUQCVGAN
154
27
0
29 Jun 2017
An online sequence-to-sequence model for noisy speech recognition
An online sequence-to-sequence model for noisy speech recognition
Chung-Cheng Chiu
Dieterich Lawson
Yuping Luo
George Tucker
Kevin Swersky
Ilya Sutskever
Navdeep Jaitly
114
7
0
16 Jun 2017
Channel-Recurrent Autoencoding for Image Modeling
Channel-Recurrent Autoencoding for Image Modeling
Wenling Shang
Kihyuk Sohn
Yuandong Tian
DRLGAN
124
3
0
12 Jun 2017
Tackling Over-pruning in Variational Autoencoders
Tackling Over-pruning in Variational Autoencoders
Serena Yeung
A. Kannan
Yann N. Dauphin
Li Fei-Fei
DRL
357
64
0
09 Jun 2017
Sliced Wasserstein Generative Models
Sliced Wasserstein Generative Models
Jiqing Wu
Zhiwu Huang
Dinesh Acharya
Wen Li
Janine Thoma
Danda Pani Paudel
Luc Van Gool
DiffM
146
0
0
08 Jun 2017
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
401
472
0
07 Jun 2017
DeLiGAN : Generative Adversarial Networks for Diverse and Limited Data
DeLiGAN : Generative Adversarial Networks for Diverse and Limited DataComputer Vision and Pattern Recognition (CVPR), 2017
Swaminathan Gurumurthy
Ravi Kiran Sarvadevabhatla
R. Venkatesh Babu
GAN
194
292
0
07 Jun 2017
On Unifying Deep Generative Models
On Unifying Deep Generative ModelsInternational Conference on Learning Representations (ICLR), 2017
Zhiting Hu
Zichao Yang
Ruslan Salakhutdinov
Eric Xing
DRLGAN
345
128
0
02 Jun 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative ModelsNeural Information Processing Systems (NeurIPS), 2017
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank Wood
Juil Sock
DRLCoGe
376
374
0
01 Jun 2017
Variational Sequential Monte Carlo
Variational Sequential Monte CarloInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2017
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
478
226
0
31 May 2017
Auto-Encoding Sequential Monte Carlo
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDLDRL
434
158
0
29 May 2017
Lifelong Generative Modeling
Lifelong Generative Modeling
Jason Ramapuram
Magda Gregorova
Alexandros Kalousis
BDLCLL
421
128
0
27 May 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
439
218
0
25 May 2017
Proximity Variational Inference
Proximity Variational Inference
Jaan Altosaar
Rajesh Ranganath
David M. Blei
BDL
115
22
0
24 May 2017
VAE with a VampPrior
VAE with a VampPrior
Jakub M. Tomczak
Max Welling
GANBDL
450
675
0
19 May 2017
Spatial Variational Auto-Encoding via Matrix-Variate Normal
  Distributions
Spatial Variational Auto-Encoding via Matrix-Variate Normal Distributions
Zhengyang Wang
Hao Yuan
Shuiwang Ji
DRL
144
8
0
18 May 2017
Learning Hard Alignments with Variational Inference
Learning Hard Alignments with Variational Inference
Dieterich Lawson
Chung-Cheng Chiu
George Tucker
Colin Raffel
Kevin Swersky
Navdeep Jaitly
DRL
133
29
0
16 May 2017
Learning Multimodal Transition Dynamics for Model-Based Reinforcement
  Learning
Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning
Thomas M. Moerland
Joost Broekens
Catholijn M. Jonker
OffRL
308
32
0
01 May 2017
Semi-supervised Bayesian Deep Multi-modal Emotion Recognition
Semi-supervised Bayesian Deep Multi-modal Emotion Recognition
Changde Du
Changying Du
Jinpeng Li
Wei-Long Zheng
Bao-Liang Lu
Huiguang He
73
9
0
25 Apr 2017
VAE Learning via Stein Variational Gradient Descent
VAE Learning via Stein Variational Gradient Descent
Yunchen Pu
Zhe Gan
Ricardo Henao
Chunyuan Li
Shaobo Han
Lawrence Carin
DRL
194
6
0
18 Apr 2017
Creativity: Generating Diverse Questions using Variational Autoencoders
Creativity: Generating Diverse Questions using Variational Autoencoders
Unnat Jain
Ziyu Zhang
Alex Schwing
163
157
0
11 Apr 2017
Continuously tempered Hamiltonian Monte Carlo
Continuously tempered Hamiltonian Monte Carlo
Matthew M. Graham
Amos J. Storkey
132
29
0
11 Apr 2017
Previous
123...14151617
Next