Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1509.01423
Cited By
v1
v2
v3 (latest)
Optical-Flow based Self-Supervised Learning of Obstacle Appearance applied to MAV Landing
4 September 2015
H. W. Ho
Christophe De Wagter
B. Remes
Guido de Croon
SSL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optical-Flow based Self-Supervised Learning of Obstacle Appearance applied to MAV Landing"
5 / 5 papers shown
Title
EdgeFlowNet: 100FPS@1W Dense Optical Flow For Tiny Mobile Robots
IEEE Robotics and Automation Letters (RA-L), 2024
Sai Ramana Kiran Pinnama Raju
Rishabh Singh
Manoj Velmurugan
Nitin J. Sanket
312
4
0
21 Nov 2024
Self-Supervised Joint Encoding of Motion and Appearance for First Person Action Recognition
M. Planamente
A. Bottino
Barbara Caputo
EgoV
131
3
0
10 Feb 2020
Mining Minimal Map-Segments for Visual Place Classifiers
Tanaka Kanji
88
2
0
15 Sep 2019
Unsupervised Learning of a Hierarchical Spiking Neural Network for Optical Flow Estimation: From Events to Global Motion Perception
Federico Paredes-Valles
Kirk Y. W. Scheper
Guido C. H. E de Croon
182
171
0
28 Jul 2018
On-board Communication-based Relative Localization for Collision Avoidance in Micro Air Vehicle teams
M. Coppola
K. McGuire
Kirk Y. W. Scheper
Guido C. H. E de Croon
129
48
0
28 Sep 2016
1