ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1509.01618
  4. Cited By
Efficient Sampling for k-Determinantal Point Processes
v1v2 (latest)

Efficient Sampling for k-Determinantal Point Processes

4 September 2015
Chengtao Li
Stefanie Jegelka
S. Sra
ArXiv (abs)PDFHTML

Papers citing "Efficient Sampling for k-Determinantal Point Processes"

22 / 22 papers shown
Title
MUSS: Multilevel Subset Selection for Relevance and Diversity
MUSS: Multilevel Subset Selection for Relevance and Diversity
Vu Nguyen
Andrey Kan
112
0
0
14 Mar 2025
Determinantal Beam Search
Determinantal Beam Search
Clara Meister
Martina Forster
Ryan Cotterell
76
13
0
14 Jun 2021
Sampling from a $k$-DPP without looking at all items
Sampling from a kkk-DPP without looking at all items
Daniele Calandriello
Michal Derezinski
Michal Valko
61
24
0
30 Jun 2020
Ensemble Kernel Methods, Implicit Regularization and Determinantal Point
  Processes
Ensemble Kernel Methods, Implicit Regularization and Determinantal Point Processes
J. Schreurs
Michaël Fanuel
Johan A. K. Suykens
62
2
0
24 Jun 2020
Determinantal Point Processes in Randomized Numerical Linear Algebra
Determinantal Point Processes in Randomized Numerical Linear Algebra
Michal Derezinski
Michael W. Mahoney
78
81
0
07 May 2020
Composable Core-sets for Determinant Maximization: A Simple Near-Optimal
  Algorithm
Composable Core-sets for Determinant Maximization: A Simple Near-Optimal Algorithm
Piotr Indyk
S. Mahabadi
S. Gharan
A. Rezaei
102
21
0
06 Jul 2019
Exact sampling of determinantal point processes with sublinear time
  preprocessing
Exact sampling of determinantal point processes with sublinear time preprocessing
Michal Derezinski
Daniele Calandriello
Michal Valko
105
55
0
31 May 2019
Nyström landmark sampling and regularized Christoffel functions
Nyström landmark sampling and regularized Christoffel functions
Michaël Fanuel
J. Schreurs
Johan A. K. Suykens
99
11
0
29 May 2019
Minimax experimental design: Bridging the gap between statistical and
  worst-case approaches to least squares regression
Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression
Michal Derezinski
K. Clarkson
Michael W. Mahoney
Manfred K. Warmuth
113
25
0
04 Feb 2019
Fast determinantal point processes via distortion-free intermediate
  sampling
Fast determinantal point processes via distortion-free intermediate sampling
Michal Derezinski
86
40
0
08 Nov 2018
A Polynomial Time MCMC Method for Sampling from Continuous DPPs
A Polynomial Time MCMC Method for Sampling from Continuous DPPs
S. Gharan
A. Rezaei
51
4
0
20 Oct 2018
Correcting the bias in least squares regression with volume-rescaled
  sampling
Correcting the bias in least squares regression with volume-rescaled sampling
Michal Derezinski
Manfred K. Warmuth
Daniel J. Hsu
60
15
0
04 Oct 2018
Active Mini-Batch Sampling using Repulsive Point Processes
Active Mini-Batch Sampling using Repulsive Point Processes
Cheng Zhang
Cengiz Öztireli
Stephan Mandt
G. Salvi
92
36
0
08 Apr 2018
Asymptotic Equivalence of Fixed-size and Varying-size Determinantal
  Point Processes
Asymptotic Equivalence of Fixed-size and Varying-size Determinantal Point Processes
Simon Barthelmé
P. Amblard
Nicolas M Tremblay
66
10
0
05 Mar 2018
Exact Sampling of Determinantal Point Processes without
  Eigendecomposition
Exact Sampling of Determinantal Point Processes without Eigendecomposition
Claire Launay
B. Galerne
A. Desolneux
110
31
0
23 Feb 2018
Fair and Diverse DPP-based Data Summarization
Fair and Diverse DPP-based Data Summarization
L. E. Celis
Vijay Keswani
D. Straszak
Amit Deshpande
Tarun Kathuria
Nisheeth K. Vishnoi
93
122
0
12 Feb 2018
Faster Greedy MAP Inference for Determinantal Point Processes
Faster Greedy MAP Inference for Determinantal Point Processes
Insu Han
P. Kambadur
KyoungSoo Park
Jinwoo Shin
81
25
0
09 Mar 2017
Learning Determinantal Point Processes in Sublinear Time
Learning Determinantal Point Processes in Sublinear Time
Christophe Dupuy
Francis R. Bach
78
26
0
19 Oct 2016
Fast DPP Sampling for Nyström with Application to Kernel Methods
Fast DPP Sampling for Nyström with Application to Kernel Methods
Chengtao Li
Stefanie Jegelka
S. Sra
97
76
0
19 Mar 2016
Low-Rank Factorization of Determinantal Point Processes for
  Recommendation
Low-Rank Factorization of Determinantal Point Processes for Recommendation
Mike Gartrell
Ulrich Paquet
Noam Koenigstein
79
77
0
17 Feb 2016
Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh
  Distributions and Determinantal Point Processes
Monte Carlo Markov Chain Algorithms for Sampling Strongly Rayleigh Distributions and Determinantal Point Processes
Nima Anari
S. Gharan
A. Rezaei
99
130
0
16 Feb 2016
Diversity Networks: Neural Network Compression Using Determinantal Point
  Processes
Diversity Networks: Neural Network Compression Using Determinantal Point Processes
Zelda E. Mariet
S. Sra
150
129
0
16 Nov 2015
1