ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.02175
  4. Cited By
Learning Summary Statistic for Approximate Bayesian Computation via Deep
  Neural Network

Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network

8 October 2015
Bai Jiang
Tung-Yu Wu
Charles Yang Zheng
W. Wong
    BDL
ArXivPDFHTML

Papers citing "Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network"

9 / 9 papers shown
Title
Misspecification-robust likelihood-free inference in high dimensions
Misspecification-robust likelihood-free inference in high dimensions
Owen Thomas
Raquel Sá-Leao
H. Lencastre
Samuel Kaski
J. Corander
Henri Pesonen
66
9
0
17 Feb 2025
Deep Generative Quantile Bayes
Deep Generative Quantile Bayes
Jungeum Kim
Percy S. Zhai
Veronika Rockova
41
0
0
10 Oct 2024
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Neural Bayes Estimators for Irregular Spatial Data using Graph Neural Networks
Matthew Sainsbury-Dale
A. Zammit‐Mangion
J. Richards
Raphael Huser
23
14
0
04 Oct 2023
Robustness to Label Noise Depends on the Shape of the Noise Distribution
  in Feature Space
Robustness to Label Noise Depends on the Shape of the Noise Distribution in Feature Space
Diane Oyen
Michal Kucer
N. Hengartner
H. Singh
NoLa
OOD
26
13
0
02 Jun 2022
Amortised Likelihood-free Inference for Expensive Time-series Simulators
  with Signatured Ratio Estimation
Amortised Likelihood-free Inference for Expensive Time-series Simulators with Signatured Ratio Estimation
Joel Dyer
Patrick W Cannon
Sebastian M. Schmon
13
9
0
23 Feb 2022
Group equivariant neural posterior estimation
Group equivariant neural posterior estimation
Maximilian Dax
Stephen R. Green
J. Gair
Michael Deistler
Bernhard Schölkopf
Jakob H. Macke
BDL
20
31
0
25 Nov 2021
Neural Networks for Parameter Estimation in Intractable Models
Neural Networks for Parameter Estimation in Intractable Models
Amanda Lenzi
J. Bessac
J. Rudi
Michael L. Stein
BDL
16
45
0
29 Jul 2021
ABCpy: A High-Performance Computing Perspective to Approximate Bayesian
  Computation
ABCpy: A High-Performance Computing Perspective to Approximate Bayesian Computation
Ritabrata Dutta
Marcel Schoengens
Lorenzo Pacchiardi
Avinash Ummadisingu
Nicole Widmer
Pierre Künzli
J. Onnela
Antonietta Mira
21
25
0
13 Nov 2017
Flexible statistical inference for mechanistic models of neural dynamics
Flexible statistical inference for mechanistic models of neural dynamics
Jan-Matthis Lueckmann
P. J. Gonçalves
Giacomo Bassetto
Kaan Öcal
M. Nonnenmacher
Jakob H. Macke
14
240
0
06 Nov 2017
1