Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1510.05328
Cited By
Exploring the Space of Adversarial Images
19 October 2015
Pedro Tabacof
Eduardo Valle
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Exploring the Space of Adversarial Images"
20 / 20 papers shown
Title
On the Relationship Between Interpretability and Explainability in Machine Learning
Benjamin Leblanc
Pascal Germain
FaML
26
0
0
20 Nov 2023
Learning video embedding space with Natural Language Supervision
P. Uppala
Abhishek Bamotra
S. Priya
Vaidehi Joshi
CLIP
15
1
0
25 Mar 2023
Identifying Adversarially Attackable and Robust Samples
Vyas Raina
Mark J. F. Gales
AAML
25
3
0
30 Jan 2023
Efficiently Finding Adversarial Examples with DNN Preprocessing
Avriti Chauhan
Mohammad Afzal
Hrishikesh Karmarkar
Y. Elboher
Kumar Madhukar
Guy Katz
AAML
24
0
0
16 Nov 2022
Multi-concept adversarial attacks
Vibha Belavadi
Yan Zhou
Murat Kantarcioglu
B. Thuraisingham
AAML
30
0
0
19 Oct 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Understanding Robustness in Teacher-Student Setting: A New Perspective
Zhuolin Yang
Zhaoxi Chen
Tiffany Cai
Xinyun Chen
Bo-wen Li
Yuandong Tian
AAML
27
2
0
25 Feb 2021
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
25
73
0
07 Aug 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
29
371
0
30 Apr 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
50
63
0
02 Mar 2020
Analysis of Random Perturbations for Robust Convolutional Neural Networks
Adam Dziedzic
S. Krishnan
OOD
AAML
16
1
0
08 Feb 2020
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
20
103
0
25 Sep 2019
Taking Care of The Discretization Problem: A Comprehensive Study of the Discretization Problem and A Black-Box Adversarial Attack in Discrete Integer Domain
Lei Bu
Yuchao Duan
Fu Song
Zhe Zhao
AAML
20
18
0
19 May 2019
Outsourcing Private Machine Learning via Lightweight Secure Arithmetic Computation
S. Garg
Zahra Ghodsi
Carmit Hazay
Yuval Ishai
Antonio Marcedone
Muthuramakrishnan Venkitasubramaniam
FedML
20
2
0
04 Dec 2018
Learning to Defend by Learning to Attack
Haoming Jiang
Zhehui Chen
Yuyang Shi
Bo Dai
T. Zhao
8
22
0
03 Nov 2018
Characterizing Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation
Chaowei Xiao
Ruizhi Deng
Bo-wen Li
F. I. F. Richard Yu
M. Liu
D. Song
AAML
16
99
0
11 Oct 2018
Cautious Deep Learning
Yotam Hechtlinger
Barnabás Póczós
Larry A. Wasserman
24
62
0
24 May 2018
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Warren He
James Wei
Xinyun Chen
Nicholas Carlini
D. Song
AAML
27
242
0
15 Jun 2017
Robustness of classifiers to universal perturbations: a geometric perspective
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
Stefano Soatto
AAML
24
118
0
26 May 2017
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
24
2,509
0
26 Oct 2016
1