ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1510.07965
  4. Cited By
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
v1v2 (latest)

Blitzkriging: Kronecker-structured Stochastic Gaussian Processes

27 October 2015
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
ArXiv (abs)PDFHTML

Papers citing "Blitzkriging: Kronecker-structured Stochastic Gaussian Processes"

14 / 14 papers shown
Title
Low-rank computation of the posterior mean in Multi-Output Gaussian Processes
Low-rank computation of the posterior mean in Multi-Output Gaussian Processes
Sebastian Esche
Martin Stoll
67
0
0
30 Apr 2025
Tensor network square root Kalman filter for online Gaussian process
  regression
Tensor network square root Kalman filter for online Gaussian process regression
Clara Menzen
Manon Kok
Kim Batselier
25
0
0
05 Sep 2024
Federated Bayesian Neural Regression: A Scalable Global Federated
  Gaussian Process
Federated Bayesian Neural Regression: A Scalable Global Federated Gaussian Process
Hao Yu
Kaiyang Guo
Mahdi Karami
Xi Chen
Guojun Zhang
Pascal Poupart
FedML
76
3
0
13 Jun 2022
The Renyi Gaussian Process: Towards Improved Generalization
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
129
3
0
15 Oct 2019
Kernel Conditional Density Operators
Kernel Conditional Density Operators
Ingmar Schuster
Mattes Mollenhauer
Stefan Klus
Krikamol Muandet
82
26
0
27 May 2019
Banded Matrix Operators for Gaussian Markov Models in the Automatic
  Differentiation Era
Banded Matrix Operators for Gaussian Markov Models in the Automatic Differentiation Era
N. Durrande
Vincent Adam
L. Bordeaux
Stefanos Eleftheriadis
J. Hensman
68
26
0
26 Feb 2019
Battery health prediction under generalized conditions using a Gaussian
  process transition model
Battery health prediction under generalized conditions using a Gaussian process transition model
R. Richardson
Michael A. Osborne
David A. Howey
34
186
0
17 Jul 2018
Scalable Gaussian Processes with Grid-Structured Eigenfunctions
  (GP-GRIEF)
Scalable Gaussian Processes with Grid-Structured Eigenfunctions (GP-GRIEF)
Trefor W. Evans
P. Nair
GP
42
25
0
05 Jul 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
133
697
0
03 Jul 2018
Standing Wave Decomposition Gaussian Process
Standing Wave Decomposition Gaussian Process
Chi-Ken Lu
Scott Cheng-Hsin Yang
Patrick Shafto
16
2
0
09 Mar 2018
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor
  Train Decomposition
Scalable Gaussian Processes with Billions of Inducing Inputs via Tensor Train Decomposition
Pavel Izmailov
Alexander Novikov
D. Kropotov
87
62
0
19 Oct 2017
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
93
202
0
21 Nov 2016
Stochastic Variational Deep Kernel Learning
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
129
267
0
01 Nov 2016
Nested Kriging predictions for datasets with large number of
  observations
Nested Kriging predictions for datasets with large number of observations
D. Rullière
N. Durrande
François Bachoc
C. Chevalier
67
67
0
19 Jul 2016
1