ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.01870
  4. Cited By
Thoughts on Massively Scalable Gaussian Processes

Thoughts on Massively Scalable Gaussian Processes

5 November 2015
A. Wilson
Christoph Dann
H. Nickisch
ArXiv (abs)PDFHTML

Papers citing "Thoughts on Massively Scalable Gaussian Processes"

30 / 30 papers shown
Title
Toward Efficient Kernel-Based Solvers for Nonlinear PDEs
Toward Efficient Kernel-Based Solvers for Nonlinear PDEs
Zhitong Xu
D. Long
Yiming Xu
Guang Yang
Shandian Zhe
Houman Owhadi
85
0
0
15 Oct 2024
Federated Bayesian Neural Regression: A Scalable Global Federated
  Gaussian Process
Federated Bayesian Neural Regression: A Scalable Global Federated Gaussian Process
Hao Yu
Kaiyang Guo
Mahdi Karami
Xi Chen
Guojun Zhang
Pascal Poupart
FedML
78
3
0
13 Jun 2022
Posterior and Computational Uncertainty in Gaussian Processes
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pfortner
Philipp Hennig
John P. Cunningham
143
20
0
30 May 2022
Forward variable selection enables fast and accurate dynamic system
  identification with Karhunen-Loève decomposed Gaussian processes
Forward variable selection enables fast and accurate dynamic system identification with Karhunen-Loève decomposed Gaussian processes
Kyle Hayes
Michael W. Fouts
Ali Baheri
D. Mebane
77
0
0
26 May 2022
Preconditioning for Scalable Gaussian Process Hyperparameter
  Optimization
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
98
24
0
01 Jul 2021
Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal
  Stochastic Linear Mixing Model
Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal Stochastic Linear Mixing Model
Rui Meng
K. Bouchard
AI4TS
50
2
0
25 Jun 2021
Local approximate Gaussian process regression for data-driven
  constitutive laws: Development and comparison with neural networks
Local approximate Gaussian process regression for data-driven constitutive laws: Development and comparison with neural networks
J. Fuhg
M. Marino
N. Bouklas
64
61
0
07 May 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain
  Observations
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
70
9
0
28 Feb 2021
The Promises and Pitfalls of Deep Kernel Learning
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCVBDL
82
109
0
24 Feb 2021
Learning ODE Models with Qualitative Structure Using Gaussian Processes
Learning ODE Models with Qualitative Structure Using Gaussian Processes
Steffen Ridderbusch
Christian Offen
Sina Ober-Blobaum
Paul Goulart
67
15
0
10 Nov 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
  Data
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
71
26
0
22 Oct 2020
Scalable Gaussian Process Regression for Kernels with a Non-Stationary
  Phase
Scalable Gaussian Process Regression for Kernels with a Non-Stationary Phase
J. Grasshoff
Alexandra Jankowski
P. Rostalski
48
3
0
25 Dec 2019
Recurrent Attentive Neural Process for Sequential Data
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDLAI4TS
81
38
0
17 Oct 2019
Lifelong Bayesian Optimization
Lifelong Bayesian Optimization
Yao Zhang
James Jordon
Ahmed Alaa
M. Schaar
123
11
0
29 May 2019
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia
  Language
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
Jamie Fairbrother
Christopher Nemeth
M. Rischard
Johanni Brea
Thomas Pinder
GPVLM
67
24
0
21 Dec 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU
  Acceleration
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
149
1,105
0
28 Sep 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
133
697
0
03 Jul 2018
Constant-Time Predictive Distributions for Gaussian Processes
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
67
96
0
16 Mar 2018
State Space Gaussian Processes with Non-Gaussian Likelihood
State Space Gaussian Processes with Non-Gaussian Likelihood
H. Nickisch
Arno Solin
A. Grigorevskiy
GP
76
32
0
13 Feb 2018
Algorithmic Linearly Constrained Gaussian Processes
Algorithmic Linearly Constrained Gaussian Processes
Markus Lange-Hegermann
69
35
0
28 Jan 2018
Gaussian Process Regression for Arctic Coastal Erosion Forecasting
Gaussian Process Regression for Arctic Coastal Erosion Forecasting
Matthew Kupilik
F. Witmer
E. MacLeod
Caixia Wang
T. Ravens
49
15
0
04 Dec 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in
  Gaussian Process Hybrid Deep Networks
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDLAAML
117
172
0
08 Jul 2017
Scaling up the Automatic Statistician: Scalable Structure Discovery
  using Gaussian Processes
Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes
Hyunjik Kim
Yee Whye Teh
63
52
0
08 Jun 2017
Bayesian Optimization with Gradients
Bayesian Optimization with Gradients
Jian Wu
Matthias Poloczek
A. Wilson
P. Frazier
69
210
0
13 Mar 2017
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
93
202
0
21 Nov 2016
Stochastic Variational Deep Kernel Learning
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
131
267
0
01 Nov 2016
Learning Scalable Deep Kernels with Recurrent Structure
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric Xing
BDL
102
105
0
27 Oct 2016
Poisson intensity estimation with reproducing kernels
Poisson intensity estimation with reproducing kernels
Seth Flaxman
Yee Whye Teh
Dino Sejdinovic
98
48
0
27 Oct 2016
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li
Kevin Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
246
2,336
0
21 Mar 2016
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
261
889
0
06 Nov 2015
1