Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.01870
Cited By
Thoughts on Massively Scalable Gaussian Processes
5 November 2015
A. Wilson
Christoph Dann
H. Nickisch
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Thoughts on Massively Scalable Gaussian Processes"
30 / 30 papers shown
Title
Toward Efficient Kernel-Based Solvers for Nonlinear PDEs
Zhitong Xu
D. Long
Yiming Xu
Guang Yang
Shandian Zhe
Houman Owhadi
85
0
0
15 Oct 2024
Federated Bayesian Neural Regression: A Scalable Global Federated Gaussian Process
Hao Yu
Kaiyang Guo
Mahdi Karami
Xi Chen
Guojun Zhang
Pascal Poupart
FedML
78
3
0
13 Jun 2022
Posterior and Computational Uncertainty in Gaussian Processes
Jonathan Wenger
Geoff Pleiss
Marvin Pfortner
Philipp Hennig
John P. Cunningham
143
20
0
30 May 2022
Forward variable selection enables fast and accurate dynamic system identification with Karhunen-Loève decomposed Gaussian processes
Kyle Hayes
Michael W. Fouts
Ali Baheri
D. Mebane
77
0
0
26 May 2022
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
Geoff Pleiss
Philipp Hennig
John P. Cunningham
Jacob R. Gardner
98
24
0
01 Jul 2021
Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal Stochastic Linear Mixing Model
Rui Meng
K. Bouchard
AI4TS
50
2
0
25 Jun 2021
Local approximate Gaussian process regression for data-driven constitutive laws: Development and comparison with neural networks
J. Fuhg
M. Marino
N. Bouklas
64
61
0
07 May 2021
Hierarchical Inducing Point Gaussian Process for Inter-domain Observations
Luhuan Wu
Andrew C. Miller
Lauren Anderson
Geoff Pleiss
David M. Blei
John P. Cunningham
70
9
0
28 Feb 2021
The Promises and Pitfalls of Deep Kernel Learning
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
82
109
0
24 Feb 2021
Learning ODE Models with Qualitative Structure Using Gaussian Processes
Steffen Ridderbusch
Christian Offen
Sina Ober-Blobaum
Paul Goulart
67
15
0
10 Nov 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
71
26
0
22 Oct 2020
Scalable Gaussian Process Regression for Kernels with a Non-Stationary Phase
J. Grasshoff
Alexandra Jankowski
P. Rostalski
48
3
0
25 Dec 2019
Recurrent Attentive Neural Process for Sequential Data
Shenghao Qin
Jiacheng Zhu
Jimmy Qin
Wenshuo Wang
Ding Zhao
BDL
AI4TS
81
38
0
17 Oct 2019
Lifelong Bayesian Optimization
Yao Zhang
James Jordon
Ahmed Alaa
M. Schaar
123
11
0
29 May 2019
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
Jamie Fairbrother
Christopher Nemeth
M. Rischard
Johanni Brea
Thomas Pinder
GP
VLM
67
24
0
21 Dec 2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob R. Gardner
Geoff Pleiss
D. Bindel
Kilian Q. Weinberger
A. Wilson
GP
149
1,105
0
28 Sep 2018
When Gaussian Process Meets Big Data: A Review of Scalable GPs
Haitao Liu
Yew-Soon Ong
Xiaobo Shen
Jianfei Cai
GP
133
697
0
03 Jul 2018
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
Jacob R. Gardner
Kilian Q. Weinberger
A. Wilson
67
96
0
16 Mar 2018
State Space Gaussian Processes with Non-Gaussian Likelihood
H. Nickisch
Arno Solin
A. Grigorevskiy
GP
76
32
0
13 Feb 2018
Algorithmic Linearly Constrained Gaussian Processes
Markus Lange-Hegermann
69
35
0
28 Jan 2018
Gaussian Process Regression for Arctic Coastal Erosion Forecasting
Matthew Kupilik
F. Witmer
E. MacLeod
Caixia Wang
T. Ravens
49
15
0
04 Dec 2017
Adversarial Examples, Uncertainty, and Transfer Testing Robustness in Gaussian Process Hybrid Deep Networks
John Bradshaw
A. G. Matthews
Zoubin Ghahramani
BDL
AAML
117
172
0
08 Jul 2017
Scaling up the Automatic Statistician: Scalable Structure Discovery using Gaussian Processes
Hyunjik Kim
Yee Whye Teh
63
52
0
08 Jun 2017
Bayesian Optimization with Gradients
Jian Wu
Matthias Poloczek
A. Wilson
P. Frazier
69
210
0
13 Mar 2017
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
93
202
0
21 Nov 2016
Stochastic Variational Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
131
267
0
01 Nov 2016
Learning Scalable Deep Kernels with Recurrent Structure
Maruan Al-Shedivat
A. Wilson
Yunus Saatchi
Zhiting Hu
Eric Xing
BDL
102
105
0
27 Oct 2016
Poisson intensity estimation with reproducing kernels
Seth Flaxman
Yee Whye Teh
Dino Sejdinovic
98
48
0
27 Oct 2016
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
Lisha Li
Kevin Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
246
2,336
0
21 Mar 2016
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
261
889
0
06 Nov 2015
1