Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.04210
Cited By
On the Quality of the Initial Basin in Overspecified Neural Networks
13 November 2015
Itay Safran
Ohad Shamir
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the Quality of the Initial Basin in Overspecified Neural Networks"
36 / 36 papers shown
Title
Gradient-Guided Annealing for Domain Generalization
Aristotelis Ballas
Christos Diou
OOD
222
0
0
27 Feb 2025
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
48
0
0
08 Feb 2024
When Expressivity Meets Trainability: Fewer than
n
n
n
Neurons Can Work
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Ruoyu Sun
Zhi-Quan Luo
29
10
0
21 Oct 2022
Deep Unfolding of the DBFB Algorithm with Application to ROI CT Imaging with Limited Angular Density
Marion Savanier
Émilie Chouzenoux
J. Pesquet
C. Riddell
32
16
0
27 Sep 2022
On the generalization of learning algorithms that do not converge
N. Chandramoorthy
Andreas Loukas
Khashayar Gatmiry
Stefanie Jegelka
MLT
19
11
0
16 Aug 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
27
34
0
20 Jan 2022
Optimization-Based Separations for Neural Networks
Itay Safran
Jason D. Lee
185
14
0
04 Dec 2021
Landscape analysis for shallow neural networks: complete classification of critical points for affine target functions
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
24
10
0
19 Mar 2021
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
32
1
0
07 Dec 2020
Pruning Convolutional Filters using Batch Bridgeout
Najeeb Khan
Ian Stavness
28
3
0
23 Sep 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
24
81
0
15 Jun 2020
Non-convergence of stochastic gradient descent in the training of deep neural networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
14
37
0
12 Jun 2020
On the Power and Limitations of Random Features for Understanding Neural Networks
Gilad Yehudai
Ohad Shamir
MLT
26
181
0
01 Apr 2019
Non-attracting Regions of Local Minima in Deep and Wide Neural Networks
Henning Petzka
C. Sminchisescu
29
9
0
16 Dec 2018
Gradient Descent Finds Global Minima of Deep Neural Networks
S. Du
J. Lee
Haochuan Li
Liwei Wang
Masayoshi Tomizuka
ODL
44
1,125
0
09 Nov 2018
A Priori Estimates of the Population Risk for Two-layer Neural Networks
Weinan E
Chao Ma
Lei Wu
29
130
0
15 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
J. Lee
Qiang Liu
Tengyu Ma
26
245
0
12 Oct 2018
Gradient Descent Provably Optimizes Over-parameterized Neural Networks
S. Du
Xiyu Zhai
Barnabás Póczós
Aarti Singh
MLT
ODL
56
1,252
0
04 Oct 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
30
134
0
20 Jun 2018
Universal Statistics of Fisher Information in Deep Neural Networks: Mean Field Approach
Ryo Karakida
S. Akaho
S. Amari
FedML
47
140
0
04 Jun 2018
How Many Samples are Needed to Estimate a Convolutional or Recurrent Neural Network?
S. Du
Yining Wang
Xiyu Zhai
Sivaraman Balakrishnan
Ruslan Salakhutdinov
Aarti Singh
SSL
21
57
0
21 May 2018
Improved Learning of One-hidden-layer Convolutional Neural Networks with Overlaps
S. Du
Surbhi Goel
MLT
30
17
0
20 May 2018
The Loss Surface of XOR Artificial Neural Networks
D. Mehta
Xiaojun Zhao
Edgar A. Bernal
D. Wales
34
19
0
06 Apr 2018
A Walk with SGD
Chen Xing
Devansh Arpit
Christos Tsirigotis
Yoshua Bengio
27
118
0
24 Feb 2018
Gradient descent with identity initialization efficiently learns positive definite linear transformations by deep residual networks
Peter L. Bartlett
D. Helmbold
Philip M. Long
36
116
0
16 Feb 2018
Fix your classifier: the marginal value of training the last weight layer
Elad Hoffer
Itay Hubara
Daniel Soudry
35
101
0
14 Jan 2018
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
108
1,848
0
28 Dec 2017
Spurious Local Minima are Common in Two-Layer ReLU Neural Networks
Itay Safran
Ohad Shamir
40
262
0
24 Dec 2017
Recovery Guarantees for One-hidden-layer Neural Networks
Kai Zhong
Zhao Song
Prateek Jain
Peter L. Bartlett
Inderjit S. Dhillon
MLT
34
336
0
10 Jun 2017
The loss surface of deep and wide neural networks
Quynh N. Nguyen
Matthias Hein
ODL
51
283
0
26 Apr 2017
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
261
3,243
0
24 Nov 2016
Local minima in training of neural networks
G. Swirszcz
Wojciech M. Czarnecki
Razvan Pascanu
ODL
37
73
0
19 Nov 2016
Topology and Geometry of Half-Rectified Network Optimization
C. Freeman
Joan Bruna
19
233
0
04 Nov 2016
Convexified Convolutional Neural Networks
Yuchen Zhang
Percy Liang
Martin J. Wainwright
26
64
0
04 Sep 2016
No bad local minima: Data independent training error guarantees for multilayer neural networks
Daniel Soudry
Y. Carmon
19
235
0
26 May 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
1