Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1511.04599
Cited By
v1
v2
v3 (latest)
DeepFool: a simple and accurate method to fool deep neural networks
14 November 2015
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"DeepFool: a simple and accurate method to fool deep neural networks"
50 / 2,353 papers shown
Interpreting Adversarial Examples with Attributes
Sadaf Gulshad
J. H. Metzen
A. Smeulders
Zeynep Akata
FAtt
AAML
196
6
0
17 Apr 2019
Adversarial Defense Through Network Profiling Based Path Extraction
Yuxian Qiu
Jingwen Leng
Cong Guo
Quan Chen
Chong Li
Minyi Guo
Yuhao Zhu
AAML
115
56
0
17 Apr 2019
Detecting the Unexpected via Image Resynthesis
Krzysztof Lis
Krishna Kanth Nakka
Pascal Fua
Mathieu Salzmann
UQCV
279
205
0
16 Apr 2019
Generating Minimal Adversarial Perturbations with Integrated Adaptive Gradients
Yatie Xiao
Chi-Man Pun
AAML
GAN
TTA
38
0
0
12 Apr 2019
Deep learning as optimal control problems: models and numerical methods
Martin Benning
E. Celledoni
Matthias Joachim Ehrhardt
B. Owren
Carola-Bibiane Schönlieb
272
88
0
11 Apr 2019
Black-Box Decision based Adversarial Attack with Symmetric
α
α
α
-stable Distribution
Vignesh Srinivasan
E. Kuruoglu
K. Müller
Wojciech Samek
Shinichi Nakajima
AAML
141
7
0
11 Apr 2019
Black-box Adversarial Attacks on Video Recognition Models
Linxi Jiang
Jiabo He
Shaoxiang Chen
James Bailey
Yu-Gang Jiang
AAML
MLAU
247
162
0
10 Apr 2019
Towards Analyzing Semantic Robustness of Deep Neural Networks
Abdullah Hamdi
Guohao Li
AAML
280
17
0
09 Apr 2019
Adversarial Audio: A New Information Hiding Method and Backdoor for DNN-based Speech Recognition Models
Yehao Kong
Jiliang Zhang
101
31
0
08 Apr 2019
JumpReLU: A Retrofit Defense Strategy for Adversarial Attacks
N. Benjamin Erichson
Z. Yao
Michael W. Mahoney
AAML
131
27
0
07 Apr 2019
HopSkipJumpAttack: A Query-Efficient Decision-Based Attack
Jianbo Chen
Sai Li
Martin J. Wainwright
AAML
518
758
0
03 Apr 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
281
157
0
01 Apr 2019
On the Vulnerability of CNN Classifiers in EEG-Based BCIs
Xiao Zhang
Dongrui Wu
AAML
161
91
0
31 Mar 2019
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks
Francesco Croce
Jonas Rauber
Matthias Hein
AAML
133
32
0
27 Mar 2019
A geometry-inspired decision-based attack
Yujia Liu
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
141
54
0
26 Mar 2019
Defending against Whitebox Adversarial Attacks via Randomized Discretization
Yuchen Zhang
Abigail Z. Jacobs
AAML
208
77
0
25 Mar 2019
Learning from Adversarial Features for Few-Shot Classification
Wei Shen
Ziqiang Shi
Jun Sun
91
10
0
25 Mar 2019
Robust Neural Networks using Randomized Adversarial Training
Alexandre Araujo
Laurent Meunier
Rafael Pinot
Benjamin Négrevergne
AAML
OOD
258
36
0
25 Mar 2019
A Formalization of Robustness for Deep Neural Networks
T. Dreossi
Shromona Ghosh
Alberto L. Sangiovanni-Vincentelli
Sanjit A. Seshia
GAN
132
33
0
24 Mar 2019
Variational Inference with Latent Space Quantization for Adversarial Resilience
Vinay Kyatham
P. PrathoshA.
Tarun Kumar Yadav
Deepak Mishra
Dheeraj Mundhra
AAML
208
3
0
24 Mar 2019
Adversarial camera stickers: A physical camera-based attack on deep learning systems
International Conference on Machine Learning (ICML), 2019
Juncheng Billy Li
Frank R. Schmidt
J. Zico Kolter
AAML
511
189
0
21 Mar 2019
On the Robustness of Deep K-Nearest Neighbors
Chawin Sitawarin
David Wagner
AAML
OOD
179
62
0
20 Mar 2019
Practical Hidden Voice Attacks against Speech and Speaker Recognition Systems
Network and Distributed System Security Symposium (NDSS), 2019
H. Abdullah
Washington Garcia
Christian Peeters
Patrick Traynor
Kevin R. B. Butler
Joseph N. Wilson
AAML
167
178
0
18 Mar 2019
Generating Adversarial Examples With Conditional Generative Adversarial Net
International Conference on Pattern Recognition (ICPR), 2018
Ping Yu
Kaitao Song
Jianfeng Lu
AAML
GAN
130
25
0
18 Mar 2019
On Evaluation of Adversarial Perturbations for Sequence-to-Sequence Models
Paul Michel
Xian Li
Graham Neubig
J. Pino
AAML
183
143
0
15 Mar 2019
Attribution-driven Causal Analysis for Detection of Adversarial Examples
Susmit Jha
Sunny Raj
S. Fernandes
Sumit Kumar Jha
S. Jha
Gunjan Verma
B. Jalaeian
A. Swami
AAML
173
17
0
14 Mar 2019
Paradox in Deep Neural Networks: Similar yet Different while Different yet Similar
A. Akbarinia
K. Gegenfurtner
DRL
85
5
0
12 Mar 2019
Fisher-Bures Adversary Graph Convolutional Networks
Ke Sun
Piotr Koniusz
Zhen Wang
GNN
198
35
0
11 Mar 2019
Neural Network Model Extraction Attacks in Edge Devices by Hearing Architectural Hints
Xing Hu
Ling Liang
Lei Deng
Shuangchen Li
Xinfeng Xie
Yu Ji
Yufei Ding
Chang Liu
T. Sherwood
Yuan Xie
AAML
MLAU
169
40
0
10 Mar 2019
Defense Against Adversarial Images using Web-Scale Nearest-Neighbor Search
Computer Vision and Pattern Recognition (CVPR), 2019
Abhimanyu Dubey
Laurens van der Maaten
Zeki Yalniz
Shouqing Yang
D. Mahajan
AAML
245
66
0
05 Mar 2019
Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming
IEEE Transactions on Automatic Control (IEEE TAC), 2019
Mahyar Fazlyab
M. Morari
George J. Pappas
AAML
312
256
0
04 Mar 2019
A Fundamental Performance Limitation for Adversarial Classification
IEEE Control Systems Letters (L-CSS), 2019
Abed AlRahman Al Makdah
Vaibhav Katewa
Fabio Pasqualetti
AAML
158
9
0
04 Mar 2019
PuVAE: A Variational Autoencoder to Purify Adversarial Examples
IEEE Access (IEEE Access), 2019
Uiwon Hwang
Jaewoo Park
Hyemi Jang
Sungroh Yoon
N. Cho
AAML
184
90
0
02 Mar 2019
Towards Understanding Adversarial Examples Systematically: Exploring Data Size, Task and Model Factors
Ke Sun
Zhanxing Zhu
Zhouchen Lin
AAML
150
19
0
28 Feb 2019
Adversarial Attack and Defense on Point Sets
Jiancheng Yang
Qiang Zhang
Rongyao Fang
Bingbing Ni
Jinxian Liu
Qi Tian
3DPC
209
145
0
28 Feb 2019
Verification of Non-Linear Specifications for Neural Networks
Chongli Qin
Krishnamurthy Dvijotham
Dvijotham
Brendan O'Donoghue
Rudy Bunel
Robert Stanforth
Sven Gowal
J. Uesato
G. Swirszcz
Pushmeet Kohli
AAML
181
45
0
25 Feb 2019
Adversarial attacks hidden in plain sight
Jan Philip Göpfert
André Artelt
H. Wersing
Barbara Hammer
AAML
111
20
0
25 Feb 2019
Visualization, Discriminability and Applications of Interpretable Saak Features
Abinaya Manimaran
T. Ramanathan
Suya You
C.-C. Jay Kuo
FAtt
231
8
0
25 Feb 2019
Adversarial Reinforcement Learning under Partial Observability in Autonomous Computer Network Defence
Yi Han
David Hubczenko
Paul Montague
O. Vel
Tamas Abraham
Benjamin I. P. Rubinstein
C. Leckie
T. Alpcan
S. Erfani
AAML
233
6
0
25 Feb 2019
A Deep, Information-theoretic Framework for Robust Biometric Recognition
Renjie Xie
Yanzhi Chen
Yan Wo
Qiao Wang
OOD
AAML
75
1
0
23 Feb 2019
On the Sensitivity of Adversarial Robustness to Input Data Distributions
G. Ding
Kry Yik-Chau Lui
Xiaomeng Jin
Luyu Wang
Ruitong Huang
OOD
121
64
0
22 Feb 2019
Perceptual Quality-preserving Black-Box Attack against Deep Learning Image Classifiers
Diego Gragnaniello
Francesco Marra
Giovanni Poggi
L. Verdoliva
AAML
154
32
0
20 Feb 2019
There are No Bit Parts for Sign Bits in Black-Box Attacks
Abdullah Al-Dujaili
Una-May O’Reilly
AAML
345
22
0
19 Feb 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
476
961
0
18 Feb 2019
Mockingbird: Defending Against Deep-Learning-Based Website Fingerprinting Attacks with Adversarial Traces
Mohammad Saidur Rahman
Mohsen Imani
Nate Mathews
M. Wright
AAML
319
94
0
18 Feb 2019
AuxBlocks: Defense Adversarial Example via Auxiliary Blocks
Yueyao Yu
Pengfei Yu
Wenye Li
AAML
76
8
0
18 Feb 2019
DeepFault: Fault Localization for Deep Neural Networks
Hasan Ferit Eniser
Simos Gerasimou
A. Sen
AAML
141
95
0
15 Feb 2019
Can Intelligent Hyperparameter Selection Improve Resistance to Adversarial Examples?
Cody Burkard
Brent Lagesse
AAML
SILM
87
1
0
14 Feb 2019
On instabilities of deep learning in image reconstruction - Does AI come at a cost?
Vegard Antun
F. Renna
C. Poon
Ben Adcock
A. Hansen
265
666
0
14 Feb 2019
The Odds are Odd: A Statistical Test for Detecting Adversarial Examples
International Conference on Machine Learning (ICML), 2019
Kevin Roth
Yannic Kilcher
Thomas Hofmann
AAML
221
182
0
13 Feb 2019
Previous
1
2
3
...
38
39
40
...
46
47
48
Next
Page 39 of 48
Page
of 48
Go