Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.05121
Cited By
Deep Kalman Filters
16 November 2015
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
AI4TS
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Kalman Filters"
33 / 83 papers shown
Title
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDa
CML
AI4TS
45
290
0
29 May 2019
Deep Factors for Forecasting
Bernie Wang
Alex Smola
Danielle C. Maddix
Jan Gasthaus
Dean Phillips Foster
Tim Januschowski
BDL
24
170
0
28 May 2019
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling
Hao Wang
Chengzhi Mao
Hao He
Mingmin Zhao
Tommi Jaakkola
Dina Katabi
BDL
24
22
0
06 Feb 2019
Deconfounding Reinforcement Learning in Observational Settings
Chaochao Lu
Bernhard Schölkopf
José Miguel Hernández-Lobato
CML
OOD
30
73
0
26 Dec 2018
Deep Factors with Gaussian Processes for Forecasting
Danielle C. Maddix
Bernie Wang
Alex Smola
BDL
UQCV
AI4TS
33
41
0
30 Nov 2018
Learning Attractor Dynamics for Generative Memory
Yan Wu
Greg Wayne
Karol Gregor
Timothy Lillicrap
BDL
19
18
0
23 Nov 2018
Deep Generative Video Compression
Jun Han
Salvator Lombardo
Christopher Schroers
Stephan Mandt
VGen
32
58
0
05 Oct 2018
Socially Aware Kalman Neural Networks for Trajectory Prediction
Ce Ju
Zheng Wang
Xiaoyu Zhang
33
8
0
14 Sep 2018
Variational Inference for Data-Efficient Model Learning in POMDPs
Sebastian Tschiatschek
Kai Arulkumaran
Jan Stühmer
Katja Hofmann
24
15
0
23 May 2018
Approximate Bayesian inference in spatial environments
Atanas Mirchev
Baris Kayalibay
Maximilian Soelch
Patrick van der Smagt
Justin Bayer
BDL
16
22
0
18 May 2018
Spatio-Temporal Neural Networks for Space-Time Series Forecasting and Relations Discovery
Ali Ziat
E. Delasalles
Ludovic Denoyer
Patrick Gallinari
BDL
AI4TS
AI4CE
28
74
0
23 Apr 2018
Learning Awareness Models
Brandon Amos
Laurent Dinh
Serkan Cabi
Thomas Rothörl
Sergio Gomez Colmenarejo
Alistair Muldal
Tom Erez
Yuval Tassa
Nando de Freitas
Misha Denil
29
44
0
17 Apr 2018
Probabilistic Video Generation using Holistic Attribute Control
Jiawei He
Andreas M. Lehrmann
Joseph Marino
Greg Mori
Leonid Sigal
VGen
DiffM
DRL
22
77
0
21 Mar 2018
Ocean Eddy Identification and Tracking using Neural Networks
K. Franz
R. Roscher
Andres Milioto
Susanne Wenzel
J. Kusche
AI4Cl
28
69
0
20 Mar 2018
Variational Message Passing with Structured Inference Networks
Wu Lin
Nicolas Hubacher
Mohammad Emtiyaz Khan
BDL
28
54
0
15 Mar 2018
Stochastic Video Generation with a Learned Prior
Emily L. Denton
Rob Fergus
VGen
48
525
0
21 Feb 2018
State Representation Learning for Control: An Overview
Timothée Lesort
Natalia Díaz Rodríguez
Jean-François Goudou
David Filliat
OffRL
28
319
0
12 Feb 2018
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
From Deterministic to Generative: Multi-Modal Stochastic RNNs for Video Captioning
Jingkuan Song
Yuyu Guo
Lianli Gao
Xuelong Li
Alan Hanjalic
Heng Tao Shen
40
219
0
08 Aug 2017
Long Short-Term Memory Kalman Filters:Recurrent Neural Estimators for Pose Regularization
Huseyin Coskun
F. Achilles
R. DiPietro
Nassir Navab
Federico Tombari
30
162
0
06 Aug 2017
Stochastic Sequential Neural Networks with Structured Inference
Hao Liu
Haoli Bai
Lirong He
Zenglin Xu
BDL
23
3
0
24 May 2017
Clinical Intervention Prediction and Understanding using Deep Networks
Harini Suresh
Nathan Hunt
Alistair E. W. Johnson
Leo Anthony Celi
Peter Szolovits
Marzyeh Ghassemi
OOD
33
131
0
23 May 2017
The Kernel Mixture Network: A Nonparametric Method for Conditional Density Estimation of Continuous Random Variables
L. Ambrogioni
Umut Güçlü
Marcel van Gerven
E. Maris
BDL
35
47
0
19 May 2017
Learning to Represent Haptic Feedback for Partially-Observable Tasks
Jaeyong Sung
J. Salisbury
Ashutosh Saxena
SSL
25
32
0
17 May 2017
Semi-Supervised Generation with Cluster-aware Generative Models
Lars Maaløe
Marco Fraccaro
Ole Winther
23
28
0
03 Apr 2017
Towards Lifelong Self-Supervision: A Deep Learning Direction for Robotics
J. M. Wong
27
11
0
01 Nov 2016
Deep Amortized Inference for Probabilistic Programs
Daniel E. Ritchie
Paul Horsfall
Noah D. Goodman
TPM
24
81
0
18 Oct 2016
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
22
452
0
30 Sep 2016
LFADS - Latent Factor Analysis via Dynamical Systems
David Sussillo
Rafal Jozefowicz
L. F. Abbott
C. Pandarinath
AI4CE
32
89
0
22 Aug 2016
Linear dynamical neural population models through nonlinear embeddings
Yuanjun Gao
Evan Archer
Liam Paninski
John P. Cunningham
21
155
0
26 May 2016
Sequential Neural Models with Stochastic Layers
Marco Fraccaro
Søren Kaae Sønderby
Ulrich Paquet
Ole Winther
BDL
65
393
0
24 May 2016
Composing graphical models with neural networks for structured representations and fast inference
Matthew J. Johnson
David Duvenaud
Alexander B. Wiltschko
S. R. Datta
Ryan P. Adams
BDL
OCL
27
482
0
20 Mar 2016
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
34
160
0
23 Nov 2015
Previous
1
2