ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06068
  4. Cited By
Reducing Overfitting in Deep Networks by Decorrelating Representations
v1v2v3v4 (latest)

Reducing Overfitting in Deep Networks by Decorrelating Representations

19 November 2015
Michael Cogswell
Faruk Ahmed
Ross B. Girshick
C. L. Zitnick
Dhruv Batra
ArXiv (abs)PDFHTML

Papers citing "Reducing Overfitting in Deep Networks by Decorrelating Representations"

18 / 168 papers shown
Title
Incomplete Dot Products for Dynamic Computation Scaling in Neural
  Network Inference
Incomplete Dot Products for Dynamic Computation Scaling in Neural Network Inference
Bradley McDanel
Surat Teerapittayanon
H. T. Kung
75
8
0
21 Oct 2017
Learning the PE Header, Malware Detection with Minimal Domain Knowledge
Learning the PE Header, Malware Detection with Minimal Domain Knowledge
Edward Raff
Jared Sylvester
Charles K. Nicholas
157
124
0
05 Sep 2017
Scalable and Effective Deep CCA via Soft Decorrelation
Scalable and Effective Deep CCA via Soft Decorrelation
Xiaobin Chang
Tao Xiang
Timothy M. Hospedales
126
3
0
30 Jul 2017
GLSR-VAE: Geodesic Latent Space Regularization for Variational
  AutoEncoder Architectures
GLSR-VAE: Geodesic Latent Space Regularization for Variational AutoEncoder Architectures
Gaëtan Hadjeres
Frank Nielsen
F. Pachet
DRL
164
68
0
14 Jul 2017
Generative-Discriminative Variational Model for Visual Recognition
Generative-Discriminative Variational Model for Visual Recognition
Chih-Kuan Yeh
Yifan Hao
Y. Wang
VLM
95
2
0
07 Jun 2017
Deep Complex Networks
Deep Complex Networks
C. Trabelsi
O. Bilaniuk
Ying Zhang
Dmitriy Serdyuk
Sandeep Subramanian
J. F. Santos
Soroush Mehri
Negar Rostamzadeh
Yoshua Bengio
C. Pal
671
927
0
27 May 2017
Pairwise Confusion for Fine-Grained Visual Classification
Pairwise Confusion for Fine-Grained Visual Classification
Abhimanyu Dubey
O. Gupta
Pei Guo
Ramesh Raskar
Ryan Farrell
Nikhil Naik
177
10
0
22 May 2017
Forced to Learn: Discovering Disentangled Representations Without
  Exhaustive Labels
Forced to Learn: Discovering Disentangled Representations Without Exhaustive Labels
Alexey Romanov
Anna Rumshisky
OODSSLDRL
90
1
0
01 May 2017
Skip Connections Eliminate Singularities
Skip Connections Eliminate Singularities
Emin Orhan
Xaq Pitkow
384
26
0
31 Jan 2017
Training Group Orthogonal Neural Networks with Privileged Information
Training Group Orthogonal Neural Networks with Privileged InformationInternational Joint Conference on Artificial Intelligence (IJCAI), 2017
Yunpeng Chen
Xiaojie Jin
Jiashi Feng
Shuicheng Yan
171
52
0
24 Jan 2017
Normalizing the Normalizers: Comparing and Extending Network
  Normalization Schemes
Normalizing the Normalizers: Comparing and Extending Network Normalization Schemes
Mengye Ren
Renjie Liao
R. Urtasun
Fabian H. Sinz
R. Zemel
214
83
0
14 Nov 2016
Regularizing CNNs with Locally Constrained Decorrelations
Regularizing CNNs with Locally Constrained Decorrelations
Pau Rodríguez López
Jordi Gonzalez
Guillem Cucurull
J. M. Gonfaus
F. X. Roca
195
141
0
07 Nov 2016
Examining Representational Similarity in ConvNets and the Primate Visual
  Cortex
Examining Representational Similarity in ConvNets and the Primate Visual Cortex
Abhimanyu Dubey
Jayadeva Jayadeva
Sumeet Agarwal
FAtt
43
2
0
12 Sep 2016
Linking Image and Text with 2-Way Nets
Linking Image and Text with 2-Way NetsComputer Vision and Pattern Recognition (CVPR), 2016
Aviv Eisenschtat
Lior Wolf
252
182
0
29 Aug 2016
Local Binary Convolutional Neural Networks
Local Binary Convolutional Neural NetworksComputer Vision and Pattern Recognition (CVPR), 2016
Felix Juefei Xu
Vishnu Boddeti
Marios Savvides
MQ
205
270
0
22 Aug 2016
DecomposeMe: Simplifying ConvNets for End-to-End Learning
DecomposeMe: Simplifying ConvNets for End-to-End Learning
J. Álvarez
L. Petersson
121
48
0
17 Jun 2016
Low-shot Visual Recognition by Shrinking and Hallucinating Features
Low-shot Visual Recognition by Shrinking and Hallucinating Features
Bharath Hariharan
Ross B. Girshick
VLM
297
49
0
09 Jun 2016
Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups
Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups
Yani Andrew Ioannou
D. Robertson
R. Cipolla
A. Criminisi
278
285
0
20 May 2016
Previous
1234