ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06499
  4. Cited By
The Variational Gaussian Process

The Variational Gaussian Process

20 November 2015
Dustin Tran
Rajesh Ranganath
David M. Blei
    BDL
ArXivPDFHTML

Papers citing "The Variational Gaussian Process"

42 / 42 papers shown
Title
Algorithmic Identification of Essential Exogenous Nodes for Causal
  Sufficiency in Brain Networks
Algorithmic Identification of Essential Exogenous Nodes for Causal Sufficiency in Brain Networks
Abdolmahdi Bagheri
Mahdi Dehshiri
Babak N. Araabi
Alireza Akhondi-Asl
CML
29
1
0
08 Mar 2024
On the Size and Approximation Error of Distilled Sets
On the Size and Approximation Error of Distilled Sets
Alaa Maalouf
M. Tukan
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
38
4
0
23 May 2023
Variational Laplace Autoencoders
Variational Laplace Autoencoders
Yookoon Park
C. Kim
Gunhee Kim
BDL
DRL
26
21
0
30 Nov 2022
Latent Variable Modelling Using Variational Autoencoders: A survey
Latent Variable Modelling Using Variational Autoencoders: A survey
Vasanth Kalingeri
CML
DRL
26
2
0
20 Jun 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross
  Validation and Precomputation
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
32
3
0
22 May 2022
Incorporating Sum Constraints into Multitask Gaussian Processes
Incorporating Sum Constraints into Multitask Gaussian Processes
Philipp Pilar
Carl Jidling
Thomas B. Schon
Niklas Wahlström
TPM
24
3
0
03 Feb 2022
A Sparse Expansion For Deep Gaussian Processes
A Sparse Expansion For Deep Gaussian Processes
Liang Ding
Rui Tuo
Shahin Shahrampour
19
6
0
11 Dec 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
483
0
08 Mar 2021
Efficient Semi-Implicit Variational Inference
Efficient Semi-Implicit Variational Inference
Vincent Moens
Hang Ren
A. Maraval
Rasul Tutunov
Jun Wang
H. Ammar
85
6
0
15 Jan 2021
Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of
  Gaussian Processes
Task-Agnostic Online Reinforcement Learning with an Infinite Mixture of Gaussian Processes
Mengdi Xu
Wenhao Ding
Jiacheng Zhu
Zuxin Liu
Baiming Chen
Ding Zhao
CLL
OffRL
28
34
0
19 Jun 2020
Probabilistic Autoencoder
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
24
32
0
09 Jun 2020
On the Necessity and Effectiveness of Learning the Prior of Variational
  Auto-Encoder
On the Necessity and Effectiveness of Learning the Prior of Variational Auto-Encoder
Haowen Xu
Wenxiao Chen
Jinlin Lai
Zhihan Li
Youjian Zhao
Dan Pei
DRL
BDL
32
14
0
31 May 2019
Deconfounding Reinforcement Learning in Observational Settings
Deconfounding Reinforcement Learning in Observational Settings
Chaochao Lu
Bernhard Schölkopf
José Miguel Hernández-Lobato
CML
OOD
25
73
0
26 Dec 2018
Resampled Priors for Variational Autoencoders
Resampled Priors for Variational Autoencoders
Matthias Bauer
A. Mnih
BDL
DRL
22
110
0
26 Oct 2018
Evidential Deep Learning to Quantify Classification Uncertainty
Evidential Deep Learning to Quantify Classification Uncertainty
Murat Sensoy
Lance M. Kaplan
M. Kandemir
OOD
UQCV
EDL
BDL
90
953
0
05 Jun 2018
Semi-Implicit Variational Inference
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
35
121
0
28 May 2018
Sylvester Normalizing Flows for Variational Inference
Sylvester Normalizing Flows for Variational Inference
Rianne van den Berg
Leonard Hasenclever
Jakub M. Tomczak
Max Welling
BDL
DRL
18
249
0
15 Mar 2018
Semi-Amortized Variational Autoencoders
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDL
DRL
33
243
0
07 Feb 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
Continuous-Time Flows for Efficient Inference and Density Estimation
Continuous-Time Flows for Efficient Inference and Density Estimation
Changyou Chen
Chunyuan Li
Liquan Chen
Wenlin Wang
Yunchen Pu
Lawrence Carin
TPM
46
57
0
04 Sep 2017
Causal Effect Inference with Deep Latent-Variable Models
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CML
BDL
69
731
0
24 May 2017
Frequentist Consistency of Variational Bayes
Frequentist Consistency of Variational Bayes
Yixin Wang
David M. Blei
BDL
28
204
0
09 May 2017
Semi-Supervised Generation with Cluster-aware Generative Models
Semi-Supervised Generation with Cluster-aware Generative Models
Lars Maaløe
Marco Fraccaro
Ole Winther
23
28
0
03 Apr 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GAN
BDL
49
525
0
17 Jan 2017
Deep Probabilistic Programming
Deep Probabilistic Programming
Dustin Tran
Matthew D. Hoffman
Rif A. Saurous
E. Brevdo
Kevin Patrick Murphy
David M. Blei
BDL
36
193
0
13 Jan 2017
Adversarial Message Passing For Graphical Models
Adversarial Message Passing For Graphical Models
Theofanis Karaletsos
GAN
27
29
0
15 Dec 2016
Two Methods For Wild Variational Inference
Two Methods For Wild Variational Inference
Qiang Liu
Yihao Feng
BDL
32
19
0
30 Nov 2016
On the Quantitative Analysis of Decoder-Based Generative Models
On the Quantitative Analysis of Decoder-Based Generative Models
Yuhuai Wu
Yuri Burda
Ruslan Salakhutdinov
Roger C. Grosse
GAN
22
223
0
14 Nov 2016
Variational Lossy Autoencoder
Variational Lossy Autoencoder
Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
DRL
SSL
GAN
47
671
0
08 Nov 2016
Learning to Draw Samples: With Application to Amortized MLE for
  Generative Adversarial Learning
Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning
Dilin Wang
Qiang Liu
GAN
BDL
38
118
0
06 Nov 2016
Reparameterization Gradients through Acceptance-Rejection Sampling
  Algorithms
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
C. A. Naesseth
Francisco J. R. Ruiz
Scott W. Linderman
David M. Blei
BDL
25
107
0
18 Oct 2016
Random Feature Expansions for Deep Gaussian Processes
Random Feature Expansions for Deep Gaussian Processes
Kurt Cutajar
Edwin V. Bonilla
Pietro Michiardi
Maurizio Filippone
BDL
14
142
0
14 Oct 2016
Structured Inference Networks for Nonlinear State Space Models
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
16
452
0
30 Sep 2016
Discrete Variational Autoencoders
Discrete Variational Autoencoders
J. Rolfe
BDL
DRL
35
254
0
07 Sep 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
19
1,073
0
16 Aug 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDL
DRL
55
1,797
0
15 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
97
3,647
0
26 May 2016
Overdispersed Black-Box Variational Inference
Overdispersed Black-Box Variational Inference
Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
22
47
0
03 Mar 2016
Automatic Differentiation Variational Inference
Automatic Differentiation Variational Inference
A. Kucukelbir
Dustin Tran
Rajesh Ranganath
Andrew Gelman
David M. Blei
38
709
0
02 Mar 2016
Variational Inference for Sparse and Undirected Models
Variational Inference for Sparse and Undirected Models
John Ingraham
D. Marks
17
8
0
11 Feb 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
44
4,710
0
04 Jan 2016
Hierarchical Variational Models
Hierarchical Variational Models
Rajesh Ranganath
Dustin Tran
David M. Blei
DRL
VLM
23
335
0
07 Nov 2015
1