Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1511.06683
Cited By
Top-k Multiclass SVM
20 November 2015
Maksim Lapin
Matthias Hein
Bernt Schiele
VLM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Top-k Multiclass SVM"
23 / 23 papers shown
Title
Machine Learning Should Maximize Welfare, but Not by (Only) Maximizing Accuracy
Nir Rosenfeld
Haifeng Xu
FaML
HAI
114
2
0
17 Feb 2025
Multi-class Support Vector Machine with Maximizing Minimum Margin
Feiping Nie
Zhezheng Hao
Rong Wang
168
16
0
11 Dec 2023
Optimizing Partial Area Under the Top-k Curve: Theory and Practice
Zitai Wang
Qianqian Xu
Zhiyong Yang
Yuan He
Xiaochun Cao
Qingming Huang
65
7
0
03 Sep 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
100
32
0
18 Jul 2022
An Embedding Framework for the Design and Analysis of Consistent Polyhedral Surrogates
Jessie Finocchiaro
Rafael Frongillo
Bo Waggoner
103
14
0
29 Jun 2022
Differentiable Top-k Classification Learning
Felix Petersen
Hilde Kuehne
Christian Borgelt
Oliver Deussen
119
32
0
15 Jun 2022
Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity
Dixian Zhu
Yiming Ying
Tianbao Yang
122
11
0
30 Dec 2021
Tensor Normalization and Full Distribution Training
Wolfgang Fuhl
OOD
92
4
0
06 Sep 2021
sigmoidF1: A Smooth F1 Score Surrogate Loss for Multilabel Classification
Gabriel Bénédict
Vincent Koops
Daan Odijk
Maarten de Rijke
92
33
0
24 Aug 2021
T
k
_k
k
ML-AP: Adversarial Attacks to Top-
k
k
k
Multi-Label Learning
Shu Hu
Lipeng Ke
Xin Wang
Siwei Lyu
VLM
AAML
94
34
0
31 Jul 2021
Fine-grained Generalization Analysis of Vector-valued Learning
Liang Wu
Antoine Ledent
Yunwen Lei
Marius Kloft
74
10
0
29 Apr 2021
Set-valued classification -- overview via a unified framework
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
Titouan Lorieul
174
34
0
24 Feb 2021
General Framework for Binary Classification on Top Samples
Lukáš Adam
V. Mácha
Václav Smídl
Tomás Pevný
47
5
0
25 Feb 2020
An Embedding Framework for Consistent Polyhedral Surrogates
Jessie Finocchiaro
Rafael Frongillo
Bo Waggoner
59
30
0
17 Jul 2019
The Limited Multi-Label Projection Layer
Brandon Amos
V. Koltun
J. Zico Kolter
95
36
0
20 Jun 2019
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
Debraj Basu
Deepesh Data
C. Karakuş
Suhas Diggavi
MQ
74
408
0
06 Jun 2019
Learning with Fenchel-Young Losses
Mathieu Blondel
André F. T. Martins
Vlad Niculae
172
137
0
08 Jan 2019
Smooth Loss Functions for Deep Top-k Classification
Leonard Berrada
Andrew Zisserman
M. P. Kumar
74
118
0
21 Feb 2018
tau-FPL: Tolerance-Constrained Learning in Linear Time
Ao Zhang
Nan Li
Jian Pu
Jun Wang
Junchi Yan
H. Zha
32
2
0
15 Jan 2018
Learning with Average Top-k Loss
Yanbo Fan
Siwei Lyu
Yiming Ying
Bao-Gang Hu
DML
128
105
0
24 May 2017
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and Multilabel Classification
Maksim Lapin
Matthias Hein
Bernt Schiele
87
103
0
12 Dec 2016
The Z-loss: a shift and scale invariant classification loss belonging to the Spherical Family
A. D. Brébisson
Pascal Vincent
90
10
0
29 Apr 2016
Loss Functions for Top-k Error: Analysis and Insights
Maksim Lapin
Matthias Hein
Bernt Schiele
167
96
0
01 Dec 2015
1