ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1511.06683
  4. Cited By
Top-k Multiclass SVM

Top-k Multiclass SVM

20 November 2015
Maksim Lapin
Matthias Hein
Bernt Schiele
    VLM
ArXiv (abs)PDFHTML

Papers citing "Top-k Multiclass SVM"

23 / 23 papers shown
Title
Machine Learning Should Maximize Welfare, but Not by (Only) Maximizing Accuracy
Machine Learning Should Maximize Welfare, but Not by (Only) Maximizing Accuracy
Nir Rosenfeld
Haifeng Xu
FaMLHAI
114
2
0
17 Feb 2025
Multi-class Support Vector Machine with Maximizing Minimum Margin
Multi-class Support Vector Machine with Maximizing Minimum Margin
Feiping Nie
Zhezheng Hao
Rong Wang
168
16
0
11 Dec 2023
Optimizing Partial Area Under the Top-k Curve: Theory and Practice
Optimizing Partial Area Under the Top-k Curve: Theory and Practice
Zitai Wang
Qianqian Xu
Zhiyong Yang
Yuan He
Xiaochun Cao
Qingming Huang
65
7
0
03 Sep 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
100
32
0
18 Jul 2022
An Embedding Framework for the Design and Analysis of Consistent
  Polyhedral Surrogates
An Embedding Framework for the Design and Analysis of Consistent Polyhedral Surrogates
Jessie Finocchiaro
Rafael Frongillo
Bo Waggoner
103
14
0
29 Jun 2022
Differentiable Top-k Classification Learning
Differentiable Top-k Classification Learning
Felix Petersen
Hilde Kuehne
Christian Borgelt
Oliver Deussen
119
32
0
15 Jun 2022
Label Distributionally Robust Losses for Multi-class Classification:
  Consistency, Robustness and Adaptivity
Label Distributionally Robust Losses for Multi-class Classification: Consistency, Robustness and Adaptivity
Dixian Zhu
Yiming Ying
Tianbao Yang
122
11
0
30 Dec 2021
Tensor Normalization and Full Distribution Training
Tensor Normalization and Full Distribution Training
Wolfgang Fuhl
OOD
92
4
0
06 Sep 2021
sigmoidF1: A Smooth F1 Score Surrogate Loss for Multilabel
  Classification
sigmoidF1: A Smooth F1 Score Surrogate Loss for Multilabel Classification
Gabriel Bénédict
Vincent Koops
Daan Odijk
Maarten de Rijke
92
33
0
24 Aug 2021
T$_k$ML-AP: Adversarial Attacks to Top-$k$ Multi-Label Learning
Tk_kk​ML-AP: Adversarial Attacks to Top-kkk Multi-Label Learning
Shu Hu
Lipeng Ke
Xin Wang
Siwei Lyu
VLMAAML
94
34
0
31 Jul 2021
Fine-grained Generalization Analysis of Vector-valued Learning
Fine-grained Generalization Analysis of Vector-valued Learning
Liang Wu
Antoine Ledent
Yunwen Lei
Marius Kloft
74
10
0
29 Apr 2021
Set-valued classification -- overview via a unified framework
Set-valued classification -- overview via a unified framework
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
Titouan Lorieul
174
34
0
24 Feb 2021
General Framework for Binary Classification on Top Samples
General Framework for Binary Classification on Top Samples
Lukáš Adam
V. Mácha
Václav Smídl
Tomás Pevný
47
5
0
25 Feb 2020
An Embedding Framework for Consistent Polyhedral Surrogates
An Embedding Framework for Consistent Polyhedral Surrogates
Jessie Finocchiaro
Rafael Frongillo
Bo Waggoner
59
30
0
17 Jul 2019
The Limited Multi-Label Projection Layer
The Limited Multi-Label Projection Layer
Brandon Amos
V. Koltun
J. Zico Kolter
95
36
0
20 Jun 2019
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification,
  and Local Computations
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
Debraj Basu
Deepesh Data
C. Karakuş
Suhas Diggavi
MQ
74
408
0
06 Jun 2019
Learning with Fenchel-Young Losses
Learning with Fenchel-Young Losses
Mathieu Blondel
André F. T. Martins
Vlad Niculae
172
137
0
08 Jan 2019
Smooth Loss Functions for Deep Top-k Classification
Smooth Loss Functions for Deep Top-k Classification
Leonard Berrada
Andrew Zisserman
M. P. Kumar
74
118
0
21 Feb 2018
tau-FPL: Tolerance-Constrained Learning in Linear Time
tau-FPL: Tolerance-Constrained Learning in Linear Time
Ao Zhang
Nan Li
Jian Pu
Jun Wang
Junchi Yan
H. Zha
32
2
0
15 Jan 2018
Learning with Average Top-k Loss
Learning with Average Top-k Loss
Yanbo Fan
Siwei Lyu
Yiming Ying
Bao-Gang Hu
DML
128
105
0
24 May 2017
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and
  Multilabel Classification
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and Multilabel Classification
Maksim Lapin
Matthias Hein
Bernt Schiele
87
103
0
12 Dec 2016
The Z-loss: a shift and scale invariant classification loss belonging to
  the Spherical Family
The Z-loss: a shift and scale invariant classification loss belonging to the Spherical Family
A. D. Brébisson
Pascal Vincent
90
10
0
29 Apr 2016
Loss Functions for Top-k Error: Analysis and Insights
Loss Functions for Top-k Error: Analysis and Insights
Maksim Lapin
Matthias Hein
Bernt Schiele
167
96
0
01 Dec 2015
1