Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1512.07030
Cited By
Deep Learning with S-shaped Rectified Linear Activation Units
22 December 2015
Xiaojie Jin
Chunyan Xu
Jiashi Feng
Yunchao Wei
Junjun Xiong
Shuicheng Yan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning with S-shaped Rectified Linear Activation Units"
26 / 26 papers shown
Title
Advancing Constrained Monotonic Neural Networks: Achieving Universal Approximation Beyond Bounded Activations
Davide Sartor
Alberto Sinigaglia
Gian Antonio Susto
39
0
0
05 May 2025
ENN: A Neural Network with DCT Adaptive Activation Functions
Marc Martinez-Gost
Ana I. Pérez-Neira
M. Lagunas
AAML
27
6
0
02 Jul 2023
Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural Networks
Fenglei Fan
Yingxin Li
Hanchuan Peng
T. Zeng
Fei Wang
30
5
0
23 Jan 2023
Empirical study of the modulus as activation function in computer vision applications
Iván Vallés-Pérez
E. Soria-Olivas
M. Martínez-Sober
Antonio J. Serrano
Joan Vila-Francés
J. Gómez-Sanchís
33
15
0
15 Jan 2023
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
How important are activation functions in regression and classification? A survey, performance comparison, and future directions
Ameya Dilip Jagtap
George Karniadakis
AI4CE
37
71
0
06 Sep 2022
Trainable Compound Activation Functions for Machine Learning
P. Baggenstoss
TPM
17
2
0
25 Apr 2022
Deep ensembles in bioimage segmentation
L. Nanni
Daniela Cuza
A. Lumini
Andrea Loreggia
S. Brahnam
SSeg
18
8
0
24 Dec 2021
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark
S. Dubey
S. Singh
B. B. Chaudhuri
43
643
0
29 Sep 2021
Comparison of different convolutional neural network activation functions and methods for building ensembles
L. Nanni
Gianluca Maguolo
S. Brahnam
M. Paci
16
8
0
29 Mar 2021
SPLASH: Learnable Activation Functions for Improving Accuracy and Adversarial Robustness
Mohammadamin Tavakoli
Forest Agostinelli
Pierre Baldi
AAML
FAtt
36
39
0
16 Jun 2020
A survey on modern trainable activation functions
Andrea Apicella
Francesco Donnarumma
Francesco Isgrò
R. Prevete
36
366
0
02 May 2020
TanhExp: A Smooth Activation Function with High Convergence Speed for Lightweight Neural Networks
Xinyu Liu
Xiaoguang Di
27
59
0
22 Mar 2020
L*ReLU: Piece-wise Linear Activation Functions for Deep Fine-grained Visual Categorization
Mina Basirat
P. Roth
19
8
0
27 Oct 2019
Efficient Continual Learning in Neural Networks with Embedding Regularization
Jary Pomponi
Simone Scardapane
Vincenzo Lomonaco
A. Uncini
CLL
36
41
0
09 Sep 2019
Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks
Alejandro Molina
P. Schramowski
Kristian Kersting
ODL
23
79
0
15 Jul 2019
Ensemble of Convolutional Neural Networks Trained with Different Activation Functions
Gianluca Maguolo
L. Nanni
Stefano Ghidoni
26
62
0
07 May 2019
Multikernel activation functions: formulation and a case study
Simone Scardapane
Elena Nieddu
D. Firmani
P. Merialdo
36
6
0
29 Jan 2019
Activation Functions: Comparison of trends in Practice and Research for Deep Learning
S. Bodenstedt
Dominik Rivoir
A. Gachagan
S. T. Mees
31
1,269
0
08 Nov 2018
The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches
Md. Zahangir Alom
T. Taha
C. Yakopcic
Stefan Westberg
P. Sidike
Mst Shamima Nasrin
B. Van Essen
A. Awwal
V. Asari
VLM
29
875
0
03 Mar 2018
Complex-valued Neural Networks with Non-parametric Activation Functions
Simone Scardapane
S. Van Vaerenbergh
Amir Hussain
A. Uncini
23
81
0
22 Feb 2018
Activation Ensembles for Deep Neural Networks
Mark Harmon
Diego Klabjan
31
35
0
24 Feb 2017
Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework
Yuankai Wu
Huachun Tan
AI4TS
34
248
0
03 Dec 2016
On the Exploration of Convolutional Fusion Networks for Visual Recognition
Y. Liu
Yanming Guo
M. Lew
33
23
0
16 Nov 2016
Training Skinny Deep Neural Networks with Iterative Hard Thresholding Methods
Xiaojie Jin
Xiao-Tong Yuan
Jiashi Feng
Shuicheng Yan
16
78
0
19 Jul 2016
Parametric Exponential Linear Unit for Deep Convolutional Neural Networks
Ludovic Trottier
Philippe Giguère
B. Chaib-draa
41
199
0
30 May 2016
1