ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.07713
  4. Cited By
Multivariate Output Analysis for Markov chain Monte Carlo
v1v2v3v4 (latest)

Multivariate Output Analysis for Markov chain Monte Carlo

24 December 2015
Dootika Vats
James M. Flegal
Galin L. Jones
ArXiv (abs)PDFHTML

Papers citing "Multivariate Output Analysis for Markov chain Monte Carlo"

48 / 48 papers shown
Title
A Gibbs Sampler for Efficient Bayesian Inference in Sign-Identified SVARs
A Gibbs Sampler for Efficient Bayesian Inference in Sign-Identified SVARs
Jonas E. Arias
Juan F. Rubio-Ramírez
Minchul Shin
11
0
0
29 May 2025
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Generalized Posterior Calibration via Sequential Monte Carlo Sampler
Masahiro Tanaka
98
2
0
25 Apr 2024
Logistic-beta processes for dependent random probabilities with beta marginals
Logistic-beta processes for dependent random probabilities with beta marginals
Changwoo J. Lee
Alessandro Zito
Huiyan Sang
David B. Dunson
77
0
0
10 Feb 2024
For how many iterations should we run Markov chain Monte Carlo?
For how many iterations should we run Markov chain Monte Carlo?
C. Margossian
Andrew Gelman
58
7
0
05 Nov 2023
On the Utility of Equal Batch Sizes for Inference in Stochastic Gradient
  Descent
On the Utility of Equal Batch Sizes for Inference in Stochastic Gradient Descent
Rahul Singh
A. Shukla
Dootika Vats
56
0
0
14 Mar 2023
Lower bounds on the rate of convergence for accept-reject-based Markov
  chains in Wasserstein and total variation distances
Lower bounds on the rate of convergence for accept-reject-based Markov chains in Wasserstein and total variation distances
Austin R. Brown
Galin L. Jones
70
3
0
12 Dec 2022
Convergence Analysis of Data Augmentation Algorithms for Bayesian Robust
  Multivariate Linear Regression with Incomplete Data
Convergence Analysis of Data Augmentation Algorithms for Bayesian Robust Multivariate Linear Regression with Incomplete Data
Haoxiang Li
Qian Qin
Galin L. Jones
42
1
0
04 Dec 2022
Approximate Methods for Bayesian Computation
Approximate Methods for Bayesian Computation
Radu V. Craiu
Evgeny Levi
51
5
0
06 Oct 2022
Geometric ergodicity of Gibbs samplers for Bayesian error-in-variable
  regression
Geometric ergodicity of Gibbs samplers for Bayesian error-in-variable regression
Austin R. Brown
45
0
0
17 Sep 2022
Efficient shape-constrained inference for the autocovariance sequence
  from a reversible Markov chain
Efficient shape-constrained inference for the autocovariance sequence from a reversible Markov chain
Stephen Berg
Hyebin Song
70
6
0
26 Jul 2022
Solving the Poisson equation using coupled Markov chains
Solving the Poisson equation using coupled Markov chains
Randal Douc
Pierre E. Jacob
Anthony Lee
Dootika Vats
115
10
0
12 Jun 2022
On the use of a local $\hat{R}$ to improve MCMC convergence diagnostic
On the use of a local R^\hat{R}R^ to improve MCMC convergence diagnostic
Théo Moins
Julyan Arbel
A. Dutfoy
Stéphane Girard
63
13
0
13 May 2022
Scalable Spike-and-Slab
Scalable Spike-and-Slab
N. Biswas
Lester W. Mackey
Xiao-Li Meng
GP
94
12
0
04 Apr 2022
ergm 4: Computational Improvements
ergm 4: Computational Improvements
P. Krivitsky
David R. Hunter
Martina Morris
Chad Klumb University of New South Wales
43
7
0
15 Mar 2022
Analysis of two-component Gibbs samplers using the theory of two
  projections
Analysis of two-component Gibbs samplers using the theory of two projections
Qian Qin
59
3
0
29 Jan 2022
hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of
  Data with Complex Predictive Models under Uncertainty
hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of Data with Complex Predictive Models under Uncertainty
Ki-tae Kim
Umberto Villa
M. Parno
Youssef Marzouk
Omar Ghattas
N. Petra
82
19
0
01 Dec 2021
Exact Convergence Analysis for Metropolis-Hastings Independence Samplers
  in Wasserstein Distances
Exact Convergence Analysis for Metropolis-Hastings Independence Samplers in Wasserstein Distances
Austin R. Brown
Galin L. Jones
64
7
0
19 Nov 2021
Convergence of position-dependent MALA with application to conditional
  simulation in GLMMs
Convergence of position-dependent MALA with application to conditional simulation in GLMMs
Vivekananda Roy
Lijin Zhang
67
8
0
28 Aug 2021
Antithetic Riemannian Manifold And Quantum-Inspired Hamiltonian Monte
  Carlo
Antithetic Riemannian Manifold And Quantum-Inspired Hamiltonian Monte Carlo
W. Mongwe
R. Mbuvha
T. Marwala
48
6
0
05 Jul 2021
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Semi-Empirical Objective Functions for MCMC Proposal Optimization
Chris Cannella
Vahid Tarokh
65
1
0
03 Jun 2021
Dimension-free Mixing for High-dimensional Bayesian Variable Selection
Dimension-free Mixing for High-dimensional Bayesian Variable Selection
Quan Zhou
Jun Yang
Dootika Vats
Gareth O. Roberts
Jeffrey S. Rosenthal
59
26
0
12 May 2021
Optimal Scaling of MCMC Beyond Metropolis
Optimal Scaling of MCMC Beyond Metropolis
Sanket Agrawal
Dootika Vats
K. Łatuszyński
Gareth O. Roberts
73
11
0
05 Apr 2021
Coupling-based convergence assessment of some Gibbs samplers for
  high-dimensional Bayesian regression with shrinkage priors
Coupling-based convergence assessment of some Gibbs samplers for high-dimensional Bayesian regression with shrinkage priors
N. Biswas
A. Bhattacharya
Pierre E. Jacob
J. Johndrow
78
14
0
09 Dec 2020
Backfitting for large scale crossed random effects regressions
Backfitting for large scale crossed random effects regressions
Swarnadip Ghosh
Trevor Hastie
Art B. Owen
32
15
0
21 Jul 2020
Convergence Rates of Two-Component MCMC Samplers
Convergence Rates of Two-Component MCMC Samplers
Qian Qin
Galin L. Jones
43
14
0
26 Jun 2020
Optimal Thinning of MCMC Output
Optimal Thinning of MCMC Output
M. Riabiz
W. Chen
Jon Cockayne
P. Swietach
Steven Niederer
Lester W. Mackey
Chris J. Oates
78
47
0
08 May 2020
Online Covariance Matrix Estimation in Stochastic Gradient Descent
Online Covariance Matrix Estimation in Stochastic Gradient Descent
Wanrong Zhu
Xi Chen
Wei Biao Wu
121
57
0
10 Feb 2020
Reduced-dimensional Monte Carlo Maximum Likelihood for Latent Gaussian
  Random Field Models
Reduced-dimensional Monte Carlo Maximum Likelihood for Latent Gaussian Random Field Models
Jaewoo Park
M. Haran
20
7
0
22 Oct 2019
Challenges in Markov chain Monte Carlo for Bayesian neural networks
Challenges in Markov chain Monte Carlo for Bayesian neural networks
Theodore Papamarkou
Jacob D. Hinkle
M. T. Young
D. Womble
BDL
131
51
0
15 Oct 2019
Convergence diagnostics for Markov chain Monte Carlo
Convergence diagnostics for Markov chain Monte Carlo
Vivekananda Roy
80
221
0
26 Sep 2019
d-blink: Distributed End-to-End Bayesian Entity Resolution
d-blink: Distributed End-to-End Bayesian Entity Resolution
Neil G. Marchant
Andee Kaplan
Daniel N. Elazar
Benjamin I. P. Rubinstein
R. Steorts
47
23
0
13 Sep 2019
Convergence Analysis of a Collapsed Gibbs Sampler for Bayesian Vector
  Autoregressions
Convergence Analysis of a Collapsed Gibbs Sampler for Bayesian Vector Autoregressions
Karl Oskar Ekvall
Galin L. Jones
48
18
0
06 Jul 2019
Simultaneous Transformation and Rounding (STAR) Models for
  Integer-Valued Data
Simultaneous Transformation and Rounding (STAR) Models for Integer-Valued Data
Daniel R. Kowal
A. Canale
SyDa
65
19
0
27 Jun 2019
Ensemble MCMC: Accelerating Pseudo-Marginal MCMC for State Space Models
  using the Ensemble Kalman Filter
Ensemble MCMC: Accelerating Pseudo-Marginal MCMC for State Space Models using the Ensemble Kalman Filter
Christopher C. Drovandi
R. Everitt
Andrew Golightly
D. Prangle
93
14
0
05 Jun 2019
Estimating Convergence of Markov chains with L-Lag Couplings
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
58
49
0
23 May 2019
Assessing and Visualizing Simultaneous Simulation Error
Assessing and Visualizing Simultaneous Simulation Error
Nathan Robertson
James M. Flegal
Dootika Vats
Galin L. Jones
60
15
0
26 Apr 2019
Rank-normalization, folding, and localization: An improved $\widehat{R}$
  for assessing convergence of MCMC
Rank-normalization, folding, and localization: An improved R^\widehat{R}R for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
100
954
0
19 Mar 2019
Fast Markov chain Monte Carlo for high dimensional Bayesian regression
  models with shrinkage priors
Fast Markov chain Monte Carlo for high dimensional Bayesian regression models with shrinkage priors
Rui Jin
Aixin Tan
58
8
0
16 Mar 2019
Unreasonable effectiveness of Monte Carlo
Unreasonable effectiveness of Monte Carlo
Art B. Owen
33
1
0
18 Jan 2019
Revisiting the Gelman-Rubin Diagnostic
Revisiting the Gelman-Rubin Diagnostic
Dootika Vats
Christina Knudson
97
137
0
21 Dec 2018
Adaptive Tuning Of Hamiltonian Monte Carlo Within Sequential Monte Carlo
Adaptive Tuning Of Hamiltonian Monte Carlo Within Sequential Monte Carlo
Alexander K. Buchholz
Nicolas Chopin
Pierre E. Jacob
78
34
0
23 Aug 2018
Global consensus Monte Carlo
Global consensus Monte Carlo
Lewis J. Rendell
A. M. Johansen
Anthony Lee
N. Whiteley
91
40
0
24 Jul 2018
Bayesian Inference for Diffusion Processes: Using Higher-Order
  Approximations for Transition Densities
Bayesian Inference for Diffusion Processes: Using Higher-Order Approximations for Transition Densities
Susanne Pieschner
Christiane Fuchs
38
6
0
06 Jun 2018
Weighted batch means estimators in Markov chain Monte Carlo
Weighted batch means estimators in Markov chain Monte Carlo
Yating Liu
James M. Flegal
OffRL
38
19
0
21 May 2018
Trace class Markov chains for the Normal-Gamma Bayesian shrinkage model
Trace class Markov chains for the Normal-Gamma Bayesian shrinkage model
Liyuan Zhang
Kshitij Khare
34
4
0
16 Apr 2018
Finite-dimensional Gaussian approximation with linear inequality
  constraints
Finite-dimensional Gaussian approximation with linear inequality constraints
A. F. López-Lopera
François Bachoc
N. Durrande
O. Roustant
133
67
0
20 Oct 2017
Estimation of Risk Contributions with MCMC
Estimation of Risk Contributions with MCMC
Takaaki Koike
Mihoko Minami
30
10
0
10 Feb 2017
Bayesian estimation of discretely observed multi-dimensional diffusion
  processes using guided proposals
Bayesian estimation of discretely observed multi-dimensional diffusion processes using guided proposals
Frank van der Meulen
Moritz Schauer
100
59
0
18 Jun 2014
1