Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1601.00024
Cited By
Selecting Near-Optimal Learners via Incremental Data Allocation
31 December 2015
Ashish Sabharwal
Horst Samulowitz
Gerald Tesauro
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Selecting Near-Optimal Learners via Incremental Data Allocation"
23 / 23 papers shown
Title
AutoPDL: Automatic Prompt Optimization for LLM Agents
Claudio Spiess
Mandana Vaziri
Louis Mandel
Martin Hirzel
62
2
0
06 Apr 2025
Toward Theoretical Guidance for Two Common Questions in Practical Cross-Validation based Hyperparameter Selection
Parikshit Ram
Alexander G. Gray
Horst Samulowitz
Gregory Bramble
67
1
0
12 Jan 2023
A Survey on Semantics in Automated Data Science
Udayan Khurana
Kavitha Srinivas
Horst Samulowitz
51
3
0
16 May 2022
Learning Curves for Decision Making in Supervised Machine Learning: A Survey
F. Mohr
Jan N. van Rijn
112
56
0
28 Jan 2022
FLoRA: Single-shot Hyper-parameter Optimization for Federated Learning
Yi Zhou
Parikshit Ram
Theodoros Salonidis
Nathalie Baracaldo
Horst Samulowitz
Heiko Ludwig
AI4CE
79
25
0
15 Dec 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
104
9
0
20 Oct 2021
How Much Automation Does a Data Scientist Want?
Dakuo Wang
Q. V. Liao
Yunfeng Zhang
Udayan Khurana
Horst Samulowitz
Soya Park
Michael J. Muller
Lisa Amini
AI4CE
77
56
0
07 Jan 2021
Efficient Automatic CASH via Rising Bandits
Yang Li
Jiawei Jiang
Jinyang Gao
Yingxia Shao
Ce Zhang
Tengjiao Wang
83
34
0
08 Dec 2020
Solving Constrained CASH Problems with ADMM
Parikshit Ram
Sijia Liu
Deepak Vijaykeerthi
Dakuo Wang
Djallel Bouneffouf
Gregory Bramble
Horst Samulowitz
Alexander G. Gray
75
3
0
17 Jun 2020
A Survey on Neural Architecture Search
Martin Wistuba
Ambrish Rawat
Tejaswini Pedapati
AI4CE
103
259
0
04 May 2019
An ADMM Based Framework for AutoML Pipeline Configuration
Sijia Liu
Parikshit Ram
Deepak Vijaykeerthy
Djallel Bouneffouf
Gregory Bramble
Horst Samulowitz
Dakuo Wang
A. Conn
Alexander G. Gray
119
76
0
01 May 2019
Active Learning for High-Dimensional Binary Features
Ali Vahdat
Mouloud Belbahri
V. Nia
42
5
0
05 Feb 2019
Hyper-parameter Tuning under a Budget Constraint
Zhiyun Lu
Chao-Kai Chiang
Fei Sha
64
17
0
01 Feb 2019
Progressive Sampling-Based Bayesian Optimization for Efficient and Automatic Machine Learning Model Selection
Xueqiang Zeng
G. Luo
54
75
0
06 Dec 2018
Better Trees: An empirical study on hyperparameter tuning of classification decision tree induction algorithms
R. G. Mantovani
Tomáš Horváth
André L. D. Rossi
R. Cerri
Sylvio Barbon Junior
Joaquin Vanschoren
A. Carvalho
69
41
0
05 Dec 2018
Noisy Blackbox Optimization with Multi-Fidelity Queries: A Tree Search Approach
Rajat Sen
Kirthevasan Kandasamy
Sanjay Shakkottai
36
23
0
24 Oct 2018
A System for Massively Parallel Hyperparameter Tuning
Liam Li
Kevin Jamieson
Afshin Rostamizadeh
Ekaterina Gonina
Moritz Hardt
Benjamin Recht
Ameet Talwalkar
101
387
0
13 Oct 2018
Population Based Training of Neural Networks
Max Jaderberg
Valentin Dalibard
Simon Osindero
Wojciech M. Czarnecki
Jeff Donahue
...
Tim Green
Iain Dunning
Karen Simonyan
Chrisantha Fernando
Koray Kavukcuoglu
132
745
0
27 Nov 2017
An effective algorithm for hyperparameter optimization of neural networks
G. I. Diaz
Achille Fokoue
G. Nannicini
Horst Samulowitz
68
158
0
23 May 2017
REMIX: Automated Exploration for Interactive Outlier Detection
Yanjie Fu
Charu C. Aggarwal
Srinivasan Parthasarathy
D. Turaga
Hui Xiong
32
5
0
17 May 2017
DeepArchitect: Automatically Designing and Training Deep Architectures
Renato M. P. Negrinho
Geoffrey J. Gordon
109
186
0
28 Apr 2017
Multi-fidelity Bayesian Optimisation with Continuous Approximations
Kirthevasan Kandasamy
Gautam Dasarathy
J. Schneider
Barnabás Póczós
76
221
0
18 Mar 2017
Multi-fidelity Gaussian Process Bandit Optimisation
Kirthevasan Kandasamy
Gautam Dasarathy
Junier B. Oliva
J. Schneider
Barnabás Póczós
101
77
0
20 Mar 2016
1