ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.00815
  4. Cited By
Semi-parametric efficiency bounds for high-dimensional models
v1v2v3v4 (latest)

Semi-parametric efficiency bounds for high-dimensional models

5 January 2016
Jana Janková
Sara van de Geer
ArXiv (abs)PDFHTML

Papers citing "Semi-parametric efficiency bounds for high-dimensional models"

14 / 14 papers shown
Title
A variational Bayes approach to debiased inference for low-dimensional
  parameters in high-dimensional linear regression
A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression
Ismaël Castillo
Alice L'Huillier
Kolyan Ray
Luke Travis
65
0
0
18 Jun 2024
Reconciling model-X and doubly robust approaches to conditional
  independence testing
Reconciling model-X and doubly robust approaches to conditional independence testing
Ziang Niu
Abhinav Chakraborty
O. Dukes
Eugene Katsevich
72
7
0
27 Nov 2022
Small Tuning Parameter Selection for the Debiased Lasso
Small Tuning Parameter Selection for the Debiased Lasso
Akira Shinkyu
N. Sueishi
35
1
0
18 Aug 2022
Inference for Low-Rank Models
Inference for Low-Rank Models
Victor Chernozhukov
Christian B. Hansen
Yuan Liao
Yinchu Zhu
58
12
0
06 Jul 2021
A New Perspective on Debiasing Linear Regressions
A New Perspective on Debiasing Linear Regressions
Yufei Yi
Matey Neykov
80
2
0
08 Apr 2021
The Efficiency Gap
The Efficiency Gap
Timo Dimitriadis
Tobias Fissler
J. Ziegel
89
22
0
27 Oct 2020
Doubly Debiased Lasso: High-Dimensional Inference under Hidden
  Confounding
Doubly Debiased Lasso: High-Dimensional Inference under Hidden Confounding
Zijian Guo
Domagoj Cevid
Peter Buhlmann
CML
69
39
0
08 Apr 2020
Scale calibration for high-dimensional robust regression
Scale calibration for high-dimensional robust regression
Yu Li
60
27
0
06 Nov 2018
De-Biased Machine Learning of Global and Local Parameters Using
  Regularized Riesz Representers
De-Biased Machine Learning of Global and Local Parameters Using Regularized Riesz Representers
Victor Chernozhukov
Whitney Newey
Rahul Singh
110
93
0
23 Feb 2018
Inference in high-dimensional graphical models
Inference in high-dimensional graphical models
Jana Janková
Sara van de Geer
53
65
0
25 Jan 2018
Asymptotically Efficient Estimation of Smooth Functionals of Covariance
  Operators
Asymptotically Efficient Estimation of Smooth Functionals of Covariance Operators
V. Koltchinskii
93
30
0
25 Oct 2017
On the efficiency of the de-biased Lasso
On the efficiency of the de-biased Lasso
Sara van de Geer
67
6
0
26 Aug 2017
Efficient Estimation of Linear Functionals of Principal Components
Efficient Estimation of Linear Functionals of Principal Components
V. Koltchinskii
Matthias Loffler
Richard Nickl
78
33
0
25 Aug 2017
Inference for high-dimensional instrumental variables regression
Inference for high-dimensional instrumental variables regression
David Gold
Johannes Lederer
Jing Tao
89
36
0
18 Aug 2017
1