ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.01528
  4. Cited By
EIE: Efficient Inference Engine on Compressed Deep Neural Network

EIE: Efficient Inference Engine on Compressed Deep Neural Network

4 February 2016
Song Han
Xingyu Liu
Huizi Mao
Jing Pu
A. Pedram
M. Horowitz
W. Dally
ArXivPDFHTML

Papers citing "EIE: Efficient Inference Engine on Compressed Deep Neural Network"

50 / 211 papers shown
Title
TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids
TinyLSTMs: Efficient Neural Speech Enhancement for Hearing Aids
Igor Fedorov
Marko Stamenovic
Carl R. Jensen
Li-Chia Yang
Ari Mandell
Yiming Gan
Matthew Mattina
P. Whatmough
11
96
0
20 May 2020
Movement Pruning: Adaptive Sparsity by Fine-Tuning
Movement Pruning: Adaptive Sparsity by Fine-Tuning
Victor Sanh
Thomas Wolf
Alexander M. Rush
19
466
0
15 May 2020
GOBO: Quantizing Attention-Based NLP Models for Low Latency and Energy
  Efficient Inference
GOBO: Quantizing Attention-Based NLP Models for Low Latency and Energy Efficient Inference
Ali Hadi Zadeh
Isak Edo
Omar Mohamed Awad
Andreas Moshovos
MQ
22
183
0
08 May 2020
TIMELY: Pushing Data Movements and Interfaces in PIM Accelerators
  Towards Local and in Time Domain
TIMELY: Pushing Data Movements and Interfaces in PIM Accelerators Towards Local and in Time Domain
Weitao Li
Pengfei Xu
Yang Katie Zhao
Haitong Li
Yuan Xie
Yingyan Lin
9
68
0
03 May 2020
Lupulus: A Flexible Hardware Accelerator for Neural Networks
Lupulus: A Flexible Hardware Accelerator for Neural Networks
Andreas Toftegaard Kristensen
R. Giterman
Alexios Balatsoukas-Stimming
A. Burg
31
0
0
03 May 2020
Computation on Sparse Neural Networks: an Inspiration for Future
  Hardware
Computation on Sparse Neural Networks: an Inspiration for Future Hardware
Fei Sun
Minghai Qin
Tianyun Zhang
Liu Liu
Yen-kuang Chen
Yuan Xie
29
7
0
24 Apr 2020
Reducing Data Motion to Accelerate the Training of Deep Neural Networks
Reducing Data Motion to Accelerate the Training of Deep Neural Networks
Sicong Zhuang
C. Malossi
Marc Casas
17
0
0
05 Apr 2020
Rethinking Depthwise Separable Convolutions: How Intra-Kernel
  Correlations Lead to Improved MobileNets
Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets
D. Haase
Manuel Amthor
17
132
0
30 Mar 2020
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
224
382
0
05 Mar 2020
DNN-Chip Predictor: An Analytical Performance Predictor for DNN
  Accelerators with Various Dataflows and Hardware Architectures
DNN-Chip Predictor: An Analytical Performance Predictor for DNN Accelerators with Various Dataflows and Hardware Architectures
Yang Katie Zhao
Chaojian Li
Yue Wang
Pengfei Xu
Yongan Zhang
Yingyan Lin
9
41
0
26 Feb 2020
HRank: Filter Pruning using High-Rank Feature Map
HRank: Filter Pruning using High-Rank Feature Map
Mingbao Lin
Rongrong Ji
Yan Wang
Yichen Zhang
Baochang Zhang
Yonghong Tian
Ling Shao
8
714
0
24 Feb 2020
A$^3$: Accelerating Attention Mechanisms in Neural Networks with
  Approximation
A3^33: Accelerating Attention Mechanisms in Neural Networks with Approximation
Tae Jun Ham
Sungjun Jung
Seonghak Kim
Young H. Oh
Yeonhong Park
...
Jung-Hun Park
Sanghee Lee
Kyoung Park
Jae W. Lee
D. Jeong
20
211
0
22 Feb 2020
Taurus: A Data Plane Architecture for Per-Packet ML
Taurus: A Data Plane Architecture for Per-Packet ML
Tushar Swamy
Alexander Rucker
M. Shahbaz
Ishan Gaur
K. Olukotun
18
82
0
12 Feb 2020
PCNN: Pattern-based Fine-Grained Regular Pruning towards Optimizing CNN
  Accelerators
PCNN: Pattern-based Fine-Grained Regular Pruning towards Optimizing CNN Accelerators
Zhanhong Tan
Jiebo Song
Xiaolong Ma
S. Tan
Hongyang Chen
...
Yifu Wu
Shaokai Ye
Yanzhi Wang
Dehui Li
Kaisheng Ma
27
24
0
11 Feb 2020
PoPS: Policy Pruning and Shrinking for Deep Reinforcement Learning
PoPS: Policy Pruning and Shrinking for Deep Reinforcement Learning
Dor Livne
Kobi Cohen
24
50
0
14 Jan 2020
Least squares binary quantization of neural networks
Least squares binary quantization of neural networks
Hadi Pouransari
Zhucheng Tu
Oncel Tuzel
MQ
17
32
0
09 Jan 2020
DeepRecSys: A System for Optimizing End-To-End At-scale Neural
  Recommendation Inference
DeepRecSys: A System for Optimizing End-To-End At-scale Neural Recommendation Inference
Udit Gupta
Samuel Hsia
V. Saraph
Xiaodong Wang
Brandon Reagen
Gu-Yeon Wei
Hsien-Hsin S. Lee
David Brooks
Carole-Jean Wu
GNN
25
188
0
08 Jan 2020
Lightweight Residual Densely Connected Convolutional Neural Network
Lightweight Residual Densely Connected Convolutional Neural Network
Fahimeh Fooladgar
S. Kasaei
14
13
0
02 Jan 2020
2L-3W: 2-Level 3-Way Hardware-Software Co-Verification for the Mapping
  of Deep Learning Architecture (DLA) onto FPGA Boards
2L-3W: 2-Level 3-Way Hardware-Software Co-Verification for the Mapping of Deep Learning Architecture (DLA) onto FPGA Boards
Tolulope A. Odetola
Katie M. Groves
S. R. Hasan
21
5
0
14 Nov 2019
Communication Lower Bound in Convolution Accelerators
Communication Lower Bound in Convolution Accelerators
Xiaoming Chen
Yinhe Han
Yu Wang
13
29
0
08 Nov 2019
ALERT: Accurate Learning for Energy and Timeliness
ALERT: Accurate Learning for Energy and Timeliness
Chengcheng Wan
M. Santriaji
E. Rogers
H. Hoffmann
Michael Maire
Shan Lu
AI4CE
32
40
0
31 Oct 2019
Deep Semantic Segmentation of Natural and Medical Images: A Review
Deep Semantic Segmentation of Natural and Medical Images: A Review
Saeid Asgari Taghanaki
Kumar Abhishek
Joseph Paul Cohen
Julien Cohen-Adad
Ghassan Hamarneh
SSeg
VLM
33
667
0
16 Oct 2019
A Pre-defined Sparse Kernel Based Convolution for Deep CNNs
A Pre-defined Sparse Kernel Based Convolution for Deep CNNs
Souvik Kundu
Saurav Prakash
H. Akrami
P. Beerel
K. Chugg
28
12
0
02 Oct 2019
REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object
  Detection on FPGAs
REQ-YOLO: A Resource-Aware, Efficient Quantization Framework for Object Detection on FPGAs
Caiwen Ding
Shuo Wang
Ning Liu
Kaidi Xu
Yanzhi Wang
Yun Liang
MQ
13
89
0
29 Sep 2019
Serving Recurrent Neural Networks Efficiently with a Spatial Accelerator
Serving Recurrent Neural Networks Efficiently with a Spatial Accelerator
Tian Zhao
Yaqi Zhang
K. Olukotun
19
16
0
26 Sep 2019
DASNet: Dynamic Activation Sparsity for Neural Network Efficiency
  Improvement
DASNet: Dynamic Activation Sparsity for Neural Network Efficiency Improvement
Qing Yang
Jiachen Mao
Zuoguan Wang
H. Li
13
15
0
13 Sep 2019
Similarity-Preserving Knowledge Distillation
Similarity-Preserving Knowledge Distillation
Frederick Tung
Greg Mori
39
957
0
23 Jul 2019
ViP: Virtual Pooling for Accelerating CNN-based Image Classification and
  Object Detection
ViP: Virtual Pooling for Accelerating CNN-based Image Classification and Object Detection
Zhuo Chen
Jiyuan Zhang
Ruizhou Ding
Diana Marculescu
13
12
0
19 Jun 2019
Effectiveness of Distillation Attack and Countermeasure on Neural
  Network Watermarking
Effectiveness of Distillation Attack and Countermeasure on Neural Network Watermarking
Ziqi Yang
Hung Dang
E. Chang
AAML
14
34
0
14 Jun 2019
The Architectural Implications of Facebook's DNN-based Personalized
  Recommendation
The Architectural Implications of Facebook's DNN-based Personalized Recommendation
Udit Gupta
Carole-Jean Wu
Xiaodong Wang
Maxim Naumov
Brandon Reagen
...
Andrey Malevich
Dheevatsa Mudigere
M. Smelyanskiy
Liang Xiong
Xuan Zhang
GNN
30
290
0
06 Jun 2019
OpenEI: An Open Framework for Edge Intelligence
OpenEI: An Open Framework for Edge Intelligence
Xingzhou Zhang
Yifan Wang
Sidi Lu
Liangkai Liu
Lanyu Xu
Weisong Shi
21
101
0
05 Jun 2019
SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained
  Microcontrollers
SpArSe: Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers
Igor Fedorov
Ryan P. Adams
Matthew Mattina
P. Whatmough
13
164
0
28 May 2019
Improving Device-Edge Cooperative Inference of Deep Learning via 2-Step
  Pruning
Improving Device-Edge Cooperative Inference of Deep Learning via 2-Step Pruning
Wenqi Shi
Yunzhong Hou
Sheng Zhou
Z. Niu
Yang Zhang
Lu Geng
11
84
0
08 Mar 2019
Speeding up convolutional networks pruning with coarse ranking
Speeding up convolutional networks pruning with coarse ranking
Z. Wang
Chengcheng Li
Dali Wang
Xiangyang Wang
Hairong Qi
11
0
0
18 Feb 2019
Trading-off Accuracy and Energy of Deep Inference on Embedded Systems: A
  Co-Design Approach
Trading-off Accuracy and Energy of Deep Inference on Embedded Systems: A Co-Design Approach
Nitthilan Kanappan Jayakodi
Anwesha Chatterjee
Wonje Choi
J. Doppa
P. Pande
11
27
0
29 Jan 2019
ADMM-NN: An Algorithm-Hardware Co-Design Framework of DNNs Using
  Alternating Direction Method of Multipliers
ADMM-NN: An Algorithm-Hardware Co-Design Framework of DNNs Using Alternating Direction Method of Multipliers
Ao Ren
Tianyun Zhang
Shaokai Ye
Jiayu Li
Wenyao Xu
Xuehai Qian
X. Lin
Yanzhi Wang
MQ
29
162
0
31 Dec 2018
E-RNN: Design Optimization for Efficient Recurrent Neural Networks in
  FPGAs
E-RNN: Design Optimization for Efficient Recurrent Neural Networks in FPGAs
Zhe Li
Caiwen Ding
Siyue Wang
Wujie Wen
Youwei Zhuo
...
Qinru Qiu
Wenyao Xu
X. Lin
Xuehai Qian
Yanzhi Wang
MQ
12
64
0
12 Dec 2018
Pre-Defined Sparse Neural Networks with Hardware Acceleration
Pre-Defined Sparse Neural Networks with Hardware Acceleration
Sourya Dey
Kuan-Wen Huang
P. Beerel
K. Chugg
41
24
0
04 Dec 2018
Analyzing Machine Learning Workloads Using a Detailed GPU Simulator
Analyzing Machine Learning Workloads Using a Detailed GPU Simulator
Jonathan Lew
Deval Shah
Suchita Pati
Shaylin Cattell
Mengchi Zhang
...
Christopher Ng
Negar Goli
Matthew D. Sinclair
Timothy G. Rogers
Tor M. Aamodt
21
65
0
18 Nov 2018
QUENN: QUantization Engine for low-power Neural Networks
QUENN: QUantization Engine for low-power Neural Networks
Miguel de Prado
Maurizio Denna
Luca Benini
Nuria Pazos
MQ
27
14
0
14 Nov 2018
Learning to Skip Ineffectual Recurrent Computations in LSTMs
Learning to Skip Ineffectual Recurrent Computations in LSTMs
A. Ardakani
Zhengyun Ji
W. Gross
11
16
0
09 Nov 2018
A First Look at Deep Learning Apps on Smartphones
A First Look at Deep Learning Apps on Smartphones
Mengwei Xu
Jiawei Liu
Yuanqiang Liu
F. Lin
Yunxin Liu
Xuanzhe Liu
HAI
25
177
0
08 Nov 2018
To Compress, or Not to Compress: Characterizing Deep Learning Model
  Compression for Embedded Inference
To Compress, or Not to Compress: Characterizing Deep Learning Model Compression for Embedded Inference
Qing Qin
Jie Ren
Jia-Le Yu
Ling Gao
Hai Wang
Jie Zheng
Yansong Feng
Jianbin Fang
Zheng Wang
11
21
0
21 Oct 2018
SCALE-Sim: Systolic CNN Accelerator Simulator
SCALE-Sim: Systolic CNN Accelerator Simulator
A. Samajdar
Yuhao Zhu
P. Whatmough
Matthew Mattina
Tushar Krishna
19
136
0
16 Oct 2018
Training Deep Neural Network in Limited Precision
Training Deep Neural Network in Limited Precision
Hyunsun Park
J. Lee
Youngmin Oh
Sangwon Ha
Seungwon Lee
19
8
0
12 Oct 2018
Dynamic Channel Pruning: Feature Boosting and Suppression
Dynamic Channel Pruning: Feature Boosting and Suppression
Xitong Gao
Yiren Zhao
L. Dudziak
Robert D. Mullins
Chengzhong Xu
14
311
0
12 Oct 2018
Rethinking the Value of Network Pruning
Rethinking the Value of Network Pruning
Zhuang Liu
Mingjie Sun
Tinghui Zhou
Gao Huang
Trevor Darrell
8
1,449
0
11 Oct 2018
Mini-batch Serialization: CNN Training with Inter-layer Data Reuse
Mini-batch Serialization: CNN Training with Inter-layer Data Reuse
Sangkug Lym
Armand Behroozi
W. Wen
Ge Li
Yongkee Kwon
M. Erez
12
25
0
30 Sep 2018
Shift-based Primitives for Efficient Convolutional Neural Networks
Shift-based Primitives for Efficient Convolutional Neural Networks
Huasong Zhong
Xianggen Liu
Yihui He
Yuchun Ma
29
20
0
22 Sep 2018
MBS: Macroblock Scaling for CNN Model Reduction
MBS: Macroblock Scaling for CNN Model Reduction
Yu-Hsun Lin
Chun-Nan Chou
Edward Y. Chang
MQ
16
4
0
18 Sep 2018
Previous
12345
Next