ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.01528
  4. Cited By
EIE: Efficient Inference Engine on Compressed Deep Neural Network

EIE: Efficient Inference Engine on Compressed Deep Neural Network

4 February 2016
Song Han
Xingyu Liu
Huizi Mao
Jing Pu
A. Pedram
M. Horowitz
W. Dally
ArXivPDFHTML

Papers citing "EIE: Efficient Inference Engine on Compressed Deep Neural Network"

50 / 211 papers shown
Title
Multiply-and-Fire (MNF): An Event-driven Sparse Neural Network
  Accelerator
Multiply-and-Fire (MNF): An Event-driven Sparse Neural Network Accelerator
Miao Yu
Tingting Xiang
Venkata Pavan Kumar Miriyala
Trevor E. Carlson
15
1
0
20 Apr 2022
Accelerating Attention through Gradient-Based Learned Runtime Pruning
Accelerating Attention through Gradient-Based Learned Runtime Pruning
Zheng Li
Soroush Ghodrati
Amir Yazdanbakhsh
H. Esmaeilzadeh
Mingu Kang
19
16
0
07 Apr 2022
Energy-Latency Attacks via Sponge Poisoning
Energy-Latency Attacks via Sponge Poisoning
Antonio Emanuele Cinà
Ambra Demontis
Battista Biggio
Fabio Roli
Marcello Pelillo
SILM
39
29
0
14 Mar 2022
GROW: A Row-Stationary Sparse-Dense GEMM Accelerator for
  Memory-Efficient Graph Convolutional Neural Networks
GROW: A Row-Stationary Sparse-Dense GEMM Accelerator for Memory-Efficient Graph Convolutional Neural Networks
Ranggi Hwang
M. Kang
Jiwon Lee
D. Kam
Youngjoo Lee
Minsoo Rhu
GNN
11
20
0
01 Mar 2022
EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network
  Accelerators
EcoFlow: Efficient Convolutional Dataflows for Low-Power Neural Network Accelerators
Lois Orosa
Skanda Koppula
Yaman Umuroglu
Konstantinos Kanellopoulos
Juan Gómez Luna
Michaela Blott
K. Vissers
O. Mutlu
38
4
0
04 Feb 2022
Real-Time Gaze Tracking with Event-Driven Eye Segmentation
Real-Time Gaze Tracking with Event-Driven Eye Segmentation
Yu Feng
Nathan Goulding
Asif Khan
Hans Reyserhove
Yuhao Zhu
25
38
0
19 Jan 2022
Problem-dependent attention and effort in neural networks with
  applications to image resolution and model selection
Problem-dependent attention and effort in neural networks with applications to image resolution and model selection
Chris Rohlfs
16
4
0
05 Jan 2022
Speedup deep learning models on GPU by taking advantage of efficient
  unstructured pruning and bit-width reduction
Speedup deep learning models on GPU by taking advantage of efficient unstructured pruning and bit-width reduction
Marcin Pietroñ
Dominik Zurek
22
13
0
28 Dec 2021
Compact Multi-level Sparse Neural Networks with Input Independent
  Dynamic Rerouting
Compact Multi-level Sparse Neural Networks with Input Independent Dynamic Rerouting
Minghai Qin
Tianyun Zhang
Fei Sun
Yen-kuang Chen
M. Fardad
Yanzhi Wang
Yuan Xie
31
0
0
21 Dec 2021
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
25
26
0
16 Dec 2021
Hidden-Fold Networks: Random Recurrent Residuals Using Sparse Supermasks
Hidden-Fold Networks: Random Recurrent Residuals Using Sparse Supermasks
Ángel López García-Arias
Masanori Hashimoto
Masato Motomura
Jaehoon Yu
31
5
0
24 Nov 2021
SPA-GCN: Efficient and Flexible GCN Accelerator with an Application for
  Graph Similarity Computation
SPA-GCN: Efficient and Flexible GCN Accelerator with an Application for Graph Similarity Computation
Atefeh Sohrabizadeh
Yuze Chi
Jason Cong
GNN
29
1
0
10 Nov 2021
Phantom: A High-Performance Computational Core for Sparse Convolutional
  Neural Networks
Phantom: A High-Performance Computational Core for Sparse Convolutional Neural Networks
Mahmood Azhar Qureshi
Arslan Munir
19
0
0
09 Nov 2021
Generalized Depthwise-Separable Convolutions for Adversarially Robust
  and Efficient Neural Networks
Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks
Hassan Dbouk
Naresh R Shanbhag
AAML
19
7
0
28 Oct 2021
Bandwidth Utilization Side-Channel on ML Inference Accelerators
Bandwidth Utilization Side-Channel on ML Inference Accelerators
Sarbartha Banerjee
Shijia Wei
Prakash Ramrakhyani
Mohit Tiwari
18
3
0
14 Oct 2021
Memory-Efficient CNN Accelerator Based on Interlayer Feature Map
  Compression
Memory-Efficient CNN Accelerator Based on Interlayer Feature Map Compression
Zhuang Shao
Xiaoliang Chen
Li Du
Lei Chen
Yuan Du
Weihao Zhuang
Huadong Wei
Chenjia Xie
Zhongfeng Wang
13
26
0
12 Oct 2021
Prune Your Model Before Distill It
Prune Your Model Before Distill It
Jinhyuk Park
Albert No
VLM
38
27
0
30 Sep 2021
On the Accuracy of Analog Neural Network Inference Accelerators
On the Accuracy of Analog Neural Network Inference Accelerators
T. Xiao
Ben Feinberg
C. Bennett
V. Prabhakar
Prashant Saxena
V. Agrawal
S. Agarwal
M. Marinella
22
32
0
03 Sep 2021
Design and Scaffolded Training of an Efficient DNN Operator for Computer
  Vision on the Edge
Design and Scaffolded Training of an Efficient DNN Operator for Computer Vision on the Edge
Vinod Ganesan
Pratyush Kumar
34
2
0
25 Aug 2021
Differentiable Subset Pruning of Transformer Heads
Differentiable Subset Pruning of Transformer Heads
Jiaoda Li
Ryan Cotterell
Mrinmaya Sachan
37
53
0
10 Aug 2021
Training Compact CNNs for Image Classification using Dynamic-coded
  Filter Fusion
Training Compact CNNs for Image Classification using Dynamic-coded Filter Fusion
Mingbao Lin
Bohong Chen
Fei Chao
Rongrong Ji
VLM
25
23
0
14 Jul 2021
Improving the Efficiency of Transformers for Resource-Constrained
  Devices
Improving the Efficiency of Transformers for Resource-Constrained Devices
Hamid Tabani
Ajay Balasubramaniam
Shabbir Marzban
Elahe Arani
Bahram Zonooz
33
20
0
30 Jun 2021
Layer Folding: Neural Network Depth Reduction using Activation
  Linearization
Layer Folding: Neural Network Depth Reduction using Activation Linearization
Amir Ben Dror
Niv Zehngut
Avraham Raviv
E. Artyomov
Ran Vitek
R. Jevnisek
21
20
0
17 Jun 2021
VersaGNN: a Versatile accelerator for Graph neural networks
VersaGNN: a Versatile accelerator for Graph neural networks
Feng Shi
Yiqiao Jin
Song-Chun Zhu
GNN
48
17
0
04 May 2021
SETGAN: Scale and Energy Trade-off GANs for Image Applications on Mobile
  Platforms
SETGAN: Scale and Energy Trade-off GANs for Image Applications on Mobile Platforms
Nitthilan Kanappan Jayakodi
J. Doppa
P. Pande
GAN
28
4
0
23 Mar 2021
Extending Sparse Tensor Accelerators to Support Multiple Compression
  Formats
Extending Sparse Tensor Accelerators to Support Multiple Compression Formats
Eric Qin
Geonhwa Jeong
William Won
Sheng-Chun Kao
Hyoukjun Kwon
S. Srinivasan
Dipankar Das
G. Moon
S. Rajamanickam
T. Krishna
27
18
0
18 Mar 2021
unzipFPGA: Enhancing FPGA-based CNN Engines with On-the-Fly Weights
  Generation
unzipFPGA: Enhancing FPGA-based CNN Engines with On-the-Fly Weights Generation
Stylianos I. Venieris
Javier Fernandez-Marques
Nicholas D. Lane
16
11
0
09 Mar 2021
Knowledge Evolution in Neural Networks
Knowledge Evolution in Neural Networks
Ahmed Taha
Abhinav Shrivastava
L. Davis
45
21
0
09 Mar 2021
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space
  Search
Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space Search
Kartik Hegde
Po-An Tsai
Sitao Huang
Vikas Chandra
A. Parashar
Christopher W. Fletcher
26
90
0
02 Mar 2021
Pruning and Quantization for Deep Neural Network Acceleration: A Survey
Pruning and Quantization for Deep Neural Network Acceleration: A Survey
Tailin Liang
C. Glossner
Lei Wang
Shaobo Shi
Xiaotong Zhang
MQ
124
673
0
24 Jan 2021
BRDS: An FPGA-based LSTM Accelerator with Row-Balanced Dual-Ratio
  Sparsification
BRDS: An FPGA-based LSTM Accelerator with Row-Balanced Dual-Ratio Sparsification
Seyed Abolfazl Ghasemzadeh
E. Tavakoli
M. Kamal
A. Afzali-Kusha
Massoud Pedram
8
13
0
07 Jan 2021
Hardware and Software Optimizations for Accelerating Deep Neural
  Networks: Survey of Current Trends, Challenges, and the Road Ahead
Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead
Maurizio Capra
Beatrice Bussolino
Alberto Marchisio
Guido Masera
Maurizio Martina
Muhammad Shafique
BDL
56
140
0
21 Dec 2020
SpAtten: Efficient Sparse Attention Architecture with Cascade Token and
  Head Pruning
SpAtten: Efficient Sparse Attention Architecture with Cascade Token and Head Pruning
Hanrui Wang
Zhekai Zhang
Song Han
20
373
0
17 Dec 2020
Robustness and Transferability of Universal Attacks on Compressed Models
Robustness and Transferability of Universal Attacks on Compressed Models
Alberto G. Matachana
Kenneth T. Co
Luis Muñoz-González
David Martínez
Emil C. Lupu
AAML
21
10
0
10 Dec 2020
The Why, What and How of Artificial General Intelligence Chip
  Development
The Why, What and How of Artificial General Intelligence Chip Development
Alex P. James
13
20
0
08 Dec 2020
Bringing AI To Edge: From Deep Learning's Perspective
Bringing AI To Edge: From Deep Learning's Perspective
Di Liu
Hao Kong
Xiangzhong Luo
Weichen Liu
Ravi Subramaniam
47
116
0
25 Nov 2020
In-Memory Nearest Neighbor Search with FeFET Multi-Bit
  Content-Addressable Memories
In-Memory Nearest Neighbor Search with FeFET Multi-Bit Content-Addressable Memories
Arman Kazemi
M. Sharifi
Ann Franchesca Laguna
F. Müller
R. Rajaei
R. Olivo
T. Kämpfe
M. Niemier
X. S. Hu
MQ
8
37
0
13 Nov 2020
LazyBatching: An SLA-aware Batching System for Cloud Machine Learning
  Inference
LazyBatching: An SLA-aware Batching System for Cloud Machine Learning Inference
Yujeong Choi
Yunseong Kim
Minsoo Rhu
19
66
0
25 Oct 2020
Tensor Casting: Co-Designing Algorithm-Architecture for Personalized
  Recommendation Training
Tensor Casting: Co-Designing Algorithm-Architecture for Personalized Recommendation Training
Youngeun Kwon
Yunjae Lee
Minsoo Rhu
19
39
0
25 Oct 2020
FPRaker: A Processing Element For Accelerating Neural Network Training
FPRaker: A Processing Element For Accelerating Neural Network Training
Omar Mohamed Awad
Mostafa Mahmoud
Isak Edo Vivancos
Ali Hadi Zadeh
Ciaran Bannon
Anand Jayarajan
Gennady Pekhimenko
Andreas Moshovos
20
15
0
15 Oct 2020
Efficient Transformer-based Large Scale Language Representations using
  Hardware-friendly Block Structured Pruning
Efficient Transformer-based Large Scale Language Representations using Hardware-friendly Block Structured Pruning
Bingbing Li
Zhenglun Kong
Tianyun Zhang
Ji Li
Z. Li
Hang Liu
Caiwen Ding
VLM
24
64
0
17 Sep 2020
MSP: An FPGA-Specific Mixed-Scheme, Multi-Precision Deep Neural Network
  Quantization Framework
MSP: An FPGA-Specific Mixed-Scheme, Multi-Precision Deep Neural Network Quantization Framework
Sung-En Chang
Yanyu Li
Mengshu Sun
Weiwen Jiang
Runbin Shi
Xue Lin
Yanzhi Wang
MQ
19
7
0
16 Sep 2020
Accelerating Sparse DNN Models without Hardware-Support via Tile-Wise
  Sparsity
Accelerating Sparse DNN Models without Hardware-Support via Tile-Wise Sparsity
Cong Guo
B. Hsueh
Jingwen Leng
Yuxian Qiu
Yue Guan
Zehuan Wang
Xiaoying Jia
Xipeng Li
M. Guo
Yuhao Zhu
32
82
0
29 Aug 2020
CLAN: Continuous Learning using Asynchronous Neuroevolution on Commodity
  Edge Devices
CLAN: Continuous Learning using Asynchronous Neuroevolution on Commodity Edge Devices
Parth Mannan
A. Samajdar
T. Krishna
23
2
0
27 Aug 2020
Training Sparse Neural Networks using Compressed Sensing
Training Sparse Neural Networks using Compressed Sensing
Jonathan W. Siegel
Jianhong Chen
Pengchuan Zhang
Jinchao Xu
24
5
0
21 Aug 2020
Artificial Neural Networks and Fault Injection Attacks
Artificial Neural Networks and Fault Injection Attacks
Shahin Tajik
F. Ganji
SILM
11
10
0
17 Aug 2020
Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with
  Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node
Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node
Alfio Di Mauro
Francesco Conti
Pasquale Davide Schiavone
D. Rossi
Luca Benini
13
9
0
17 Jul 2020
AQD: Towards Accurate Fully-Quantized Object Detection
AQD: Towards Accurate Fully-Quantized Object Detection
Peng Chen
Jing Liu
Bohan Zhuang
Mingkui Tan
Chunhua Shen
MQ
23
10
0
14 Jul 2020
Hardware Acceleration of Sparse and Irregular Tensor Computations of ML
  Models: A Survey and Insights
Hardware Acceleration of Sparse and Irregular Tensor Computations of ML Models: A Survey and Insights
Shail Dave
Riyadh Baghdadi
Tony Nowatzki
Sasikanth Avancha
Aviral Shrivastava
Baoxin Li
46
81
0
02 Jul 2020
AdaDeep: A Usage-Driven, Automated Deep Model Compression Framework for
  Enabling Ubiquitous Intelligent Mobiles
AdaDeep: A Usage-Driven, Automated Deep Model Compression Framework for Enabling Ubiquitous Intelligent Mobiles
Sicong Liu
Junzhao Du
Kaiming Nan
Zimu Zhou
Zhangyang Wang
Yingyan Lin
19
30
0
08 Jun 2020
Previous
12345
Next