ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.02219
  4. Cited By
Variational Hamiltonian Monte Carlo via Score Matching
v1v2 (latest)

Variational Hamiltonian Monte Carlo via Score Matching

6 February 2016
Cheng Zhang
Babak Shahbaba
Hongkai Zhao
    BDL
ArXiv (abs)PDFHTML

Papers citing "Variational Hamiltonian Monte Carlo via Score Matching"

13 / 13 papers shown
Title
Proper scoring rules for estimation and forecast evaluation
Proper scoring rules for estimation and forecast evaluation
Kartik Waghmare
Johanna Ziegel
AI4TS
250
2
0
02 Apr 2025
EigenVI: score-based variational inference with orthogonal function
  expansions
EigenVI: score-based variational inference with orthogonal function expansions
Diana Cai
Chirag Modi
C. Margossian
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
BDL
77
7
0
31 Oct 2024
Batch, match, and patch: low-rank approximations for score-based variational inference
Batch, match, and patch: low-rank approximations for score-based variational inference
Chirag Modi
Diana Cai
Lawrence K. Saul
BDL
94
3
0
29 Oct 2024
Dimension reduction via score ratio matching
Dimension reduction via score ratio matching
Ricardo Baptista
Michael C. Brennan
Youssef Marzouk
47
1
0
25 Oct 2024
Kernel Semi-Implicit Variational Inference
Kernel Semi-Implicit Variational Inference
Ziheng Cheng
Longlin Yu
Tianyu Xie
Shiyue Zhang
Cheng Zhang
57
7
0
29 May 2024
Batch and match: black-box variational inference with a score-based
  divergence
Batch and match: black-box variational inference with a score-based divergence
Diana Cai
Chirag Modi
Loucas Pillaud-Vivien
C. Margossian
Robert Mansel Gower
David M. Blei
Lawrence K. Saul
77
10
0
22 Feb 2024
Uncertainty Quantification of Graph Convolution Neural Network Models of
  Evolving Processes
Uncertainty Quantification of Graph Convolution Neural Network Models of Evolving Processes
J. Hauth
Cosmin Safta
Xun Huan
Ravi G. Patel
Reese E. Jones
BDLUQCV
74
2
0
17 Feb 2024
Scaling Up Bayesian Neural Networks with Neural Networks
Scaling Up Bayesian Neural Networks with Neural Networks
Zahra Moslemi
Yang Meng
Shiwei Lan
Babak Shahbaba
BDL
73
1
0
19 Dec 2023
Hierarchical Semi-Implicit Variational Inference with Application to
  Diffusion Model Acceleration
Hierarchical Semi-Implicit Variational Inference with Application to Diffusion Model Acceleration
Longlin Yu
Tianyu Xie
Yu Zhu
Tong Yang
Xiangyu Zhang
Cheng Zhang
DiffM
64
10
0
26 Oct 2023
Semi-Implicit Variational Inference via Score Matching
Semi-Implicit Variational Inference via Score Matching
Longlin Yu
Chuxu Zhang
77
17
0
19 Aug 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
113
81
0
07 May 2023
Deep Markov Chain Monte Carlo
Deep Markov Chain Monte Carlo
Babak Shahbaba
L. M. Lomeli
T. Chen
Shiwei Lan
BDL
58
8
0
13 Oct 2019
Modified Hamiltonian Monte Carlo for Bayesian inference
Modified Hamiltonian Monte Carlo for Bayesian inference
Tijana Radivojević
E. Akhmatskaya
106
31
0
13 Jun 2017
1