Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1602.02220
Cited By
Improved Dropout for Shallow and Deep Learning
6 February 2016
Zhe Li
Boqing Gong
Tianbao Yang
BDL
SyDa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improved Dropout for Shallow and Deep Learning"
12 / 12 papers shown
Title
FedTLU: Federated Learning with Targeted Layer Updates
Jong-Ik Park
Carlee Joe-Wong
FedML
84
0
0
28 Jan 2025
WLD-Reg: A Data-dependent Within-layer Diversity Regularizer
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
M. Gabbouj
AI4CE
23
7
0
03 Jan 2023
A Survey on Dropout Methods and Experimental Verification in Recommendation
Y. Li
Weizhi Ma
C. L. Philip Chen
M. Zhang
Yiqun Liu
Shaoping Ma
Yue Yang
33
9
0
05 Apr 2022
Data-driven discovery of interpretable causal relations for deep learning material laws with uncertainty propagation
Xiao Sun
B. Bahmani
Nikolaos N. Vlassis
WaiChing Sun
Yanxun Xu
CML
AI4CE
63
26
0
20 May 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
29
2
0
04 Jan 2021
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
24
79
0
17 Sep 2020
Dropout: Explicit Forms and Capacity Control
R. Arora
Peter L. Bartlett
Poorya Mianjy
Nathan Srebro
55
37
0
06 Mar 2020
Survey of Dropout Methods for Deep Neural Networks
Alex Labach
Hojjat Salehinejad
S. Valaee
13
149
0
25 Apr 2019
Excitation Dropout: Encouraging Plasticity in Deep Neural Networks
Andrea Zunino
Sarah Adel Bargal
Pietro Morerio
Jianming Zhang
Stan Sclaroff
Vittorio Murino
21
23
0
23 May 2018
Faster Neural Network Training with Approximate Tensor Operations
Menachem Adelman
Kfir Y. Levy
Ido Hakimi
M. Silberstein
21
26
0
21 May 2018
Pseudo-task Augmentation: From Deep Multitask Learning to Intratask Sharing---and Back
Elliot Meyerson
Risto Miikkulainen
17
45
0
11 Mar 2018
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,634
0
03 Jul 2012
1