Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1602.03442
Cited By
v1
v2 (latest)
Stochastic Quasi-Newton Langevin Monte Carlo
10 February 2016
Umut Simsekli
Roland Badeau
A. Cemgil
G. Richard
BDL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Stochastic Quasi-Newton Langevin Monte Carlo"
38 / 38 papers shown
Title
New affine invariant ensemble samplers and their dimensional scaling
Yifan Chen
308
3
0
05 May 2025
Constrained Exploration via Reflected Replica Exchange Stochastic Gradient Langevin Dynamics
International Conference on Machine Learning (ICML), 2024
Haoyang Zheng
Hengrong Du
Qi Feng
Wei Deng
Guang Lin
185
6
0
13 May 2024
Fit Like You Sample: Sample-Efficient Generalized Score Matching from Fast Mixing Diffusions
Annual Conference Computational Learning Theory (COLT), 2023
Yilong Qin
Andrej Risteski
DiffM
285
2
0
15 Jun 2023
Learning Rate Free Sampling in Constrained Domains
Louis Sharrock
Lester W. Mackey
Christopher Nemeth
319
3
0
24 May 2023
Langevin algorithms for very deep Neural Networks with application to image classification
Pierre Bras
147
6
0
27 Dec 2022
Gradient-based Adaptive Importance Samplers
Journal of the Franklin Institute (JFI), 2022
Victor Elvira
Émilie Chouzenoux
Ömer Deniz Akyildiz
Luca Martino
DiffM
231
11
0
19 Oct 2022
A stochastic Stein Variational Newton method
Alex Leviyev
Joshua Chen
Yifei Wang
Omar Ghattas
A. Zimmerman
145
9
0
19 Apr 2022
Sampling with Riemannian Hamiltonian Monte Carlo in a Constrained Space
Neural Information Processing Systems (NeurIPS), 2022
Yunbum Kook
Y. Lee
Ruoqi Shen
Santosh Vempala
227
44
0
03 Feb 2022
Batch Normalization Preconditioning for Neural Network Training
Susanna Lange
Kyle E. Helfrich
Qiang Ye
177
12
0
02 Aug 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
523
1,453
0
07 Jul 2021
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
334
21
0
23 Jun 2021
SNIPS: Solving Noisy Inverse Problems Stochastically
Neural Information Processing Systems (NeurIPS), 2021
Bahjat Kawar
Gregory Vaksman
Michael Elad
262
228
0
31 May 2021
Efficient constrained sampling via the mirror-Langevin algorithm
Neural Information Processing Systems (NeurIPS), 2020
Kwangjun Ahn
Sinho Chewi
291
60
0
30 Oct 2020
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Neural Information Processing Systems (NeurIPS), 2020
Wei Deng
Guang Lin
F. Liang
BDL
268
33
0
19 Oct 2020
An adaptive Hessian approximated stochastic gradient MCMC method
Journal of Computational Physics (JCP), 2020
Yating Wang
Wei Deng
Guang Lin
BDL
84
5
0
03 Oct 2020
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC
International Conference on Machine Learning (ICML), 2020
Wei Deng
Qi Feng
Liyao (Mars) Gao
F. Liang
Guang Lin
BDL
249
48
0
12 Aug 2020
Bayesian Sparse learning with preconditioned stochastic gradient MCMC and its applications
Yating Wang
Wei Deng
Guang Lin
147
13
0
29 Jun 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Neural Information Processing Systems (NeurIPS), 2020
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
284
77
0
03 Jun 2020
Exponential ergodicity of mirror-Langevin diffusions
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
Austin J. Stromme
193
53
0
19 May 2020
Newtonian Monte Carlo: single-site MCMC meets second-order gradient methods
Nimar S. Arora
N. Tehrani
K. Shah
Michael Tingley
Y. Li
Narjes Torabi
David Noursi
Sepehr Akhavan Masouleh
Eric Lippert
E. Meijer
BDL
62
3
0
15 Jan 2020
Information Newton's flow: second-order optimization method in probability space
Yifei Wang
Wuchen Li
307
34
0
13 Jan 2020
Maximum entropy methods for texture synthesis: theory and practice
SIAM Journal on Mathematics of Data Science (SIMODS), 2019
Valentin De Bortoli
A. Desolneux
Alain Durmus
B. Galerne
Arthur Leclaire
GAN
168
5
0
03 Dec 2019
Probabilistic Permutation Synchronization using the Riemannian Structure of the Birkhoff Polytope
Tolga Birdal
Umut Simsekli
211
40
0
11 Apr 2019
Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization
T. H. Nguyen
Umut Simsekli
G. Richard
120
30
0
22 Jan 2019
SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient
Aaron Mishkin
Frederik Kunstner
Didrik Nielsen
Mark Schmidt
Mohammad Emtiyaz Khan
BDL
UQCV
180
65
0
11 Nov 2018
Stochastic Gradient MCMC for State Space Models
Christopher Aicher
Yian Ma
N. Foti
E. Fox
185
23
0
22 Oct 2018
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration
Ningyuan Chen
Mert Gurbuzbalaban
Lingjiong Zhu
225
65
0
12 Sep 2018
Correlated pseudo-marginal Metropolis-Hastings using quasi-Newton proposals
J. Dahlin
A. Wills
B. Ninness
132
0
0
26 Jun 2018
Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization
Umut Simsekli
Çağatay Yıldız
T. H. Nguyen
G. Richard
A. Cemgil
158
22
0
07 Jun 2018
Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC
Tolga Birdal
Umut Simsekli
M. Eken
Slobodan Ilic
202
42
0
31 May 2018
Mirrored Langevin Dynamics
Neural Information Processing Systems (NeurIPS), 2018
Ya-Ping Hsieh
Ali Kavis
Paul Rolland
Volkan Cevher
315
90
0
27 Feb 2018
Stochastic quasi-Newton with adaptive step lengths for large-scale problems
A. Wills
Thomas B. Schon
130
9
0
12 Feb 2018
A Convergence Analysis for A Class of Practical Variance-Reduction Stochastic Gradient MCMC
Changyou Chen
Wenlin Wang
Yizhe Zhang
Qinliang Su
Lawrence Carin
179
28
0
04 Sep 2017
Fractional Langevin Monte Carlo: Exploring Lévy Driven Stochastic Differential Equations for Markov Chain Monte Carlo
International Conference on Machine Learning (ICML), 2017
Umut Simsekli
146
46
0
12 Jun 2017
Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC
International Conference on Machine Learning (ICML), 2017
Yulai Cong
Bo Chen
Hongwei Liu
Mingyuan Zhou
BDL
168
68
0
06 Jun 2017
Relativistic Monte Carlo
Xiaoyu Lu
Valerio Perrone
Leonard Hasenclever
Yee Whye Teh
Sebastian J. Vollmer
BDL
138
39
0
14 Sep 2016
Geometric adaptive Monte Carlo in random environment
Foundations of Data Science (FODS), 2016
Theodore Papamarkou
Alexey Lindo
E. Ford
182
4
0
29 Aug 2016
Guaranteed inference in topic models
Khoat Than
Tung Doan
132
8
0
10 Dec 2015
1